IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v437y2023ics0096300322005884.html

Efficient coupled deep neural networks for the time-dependent coupled Stokes-Darcy problems

Author

Listed:
  • Yue, Jing
  • Li, Jian

Abstract

In this paper, we propose and investigate an efficient method called CDNNs (Coupled Deep Neural Networks) for the time-dependent coupled Stokes-Darcy problems. Specifically, we encode complex interface conditions related to the variables of the coupled problems into several neural networks to constrain the approximation solution. We define a custom loss function to guarantee the physical properties of the numerical solution as well as the conservation of the energy. In particular, the present method is mesh-free since it only inputs random spatiotemporal points and can avoid the difficulties and complexities caused by the mesh-based method. Moreover, our method is parallel, it solves each variable simultaneously and independently. Furthermore, we obtain the convergence analysis to illustrate the capabilities of our method for solving the coupled problems. Numerical experiments further demonstrate the accuracy and efficiency of the proposed method.

Suggested Citation

  • Yue, Jing & Li, Jian, 2023. "Efficient coupled deep neural networks for the time-dependent coupled Stokes-Darcy problems," Applied Mathematics and Computation, Elsevier, vol. 437(C).
  • Handle: RePEc:eee:apmaco:v:437:y:2023:i:c:s0096300322005884
    DOI: 10.1016/j.amc.2022.127514
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322005884
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127514?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Shan & Xi Shen, 2025. "A Mixed-Form PINNS (MF-PINNS) For Solving The Coupled Stokes-Darcy Equations," Papers 2510.17508, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristina O. F. Williams & Benjamin F. Akers, 2023. "Numerical Simulation of the Korteweg–de Vries Equation with Machine Learning," Mathematics, MDPI, vol. 11(13), pages 1-14, June.
    2. Christian Beck & Lukas Gonon & Arnulf Jentzen, 2024. "Overcoming the curse of dimensionality in the numerical approximation of high-dimensional semilinear elliptic partial differential equations," Partial Differential Equations and Applications, Springer, vol. 5(6), pages 1-47, December.
    3. William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Working Papers hal-03145949, HAL.
    4. Zhou, Tao & Zhou, Han & Li, Ming-Gen & Yan, Shiwei, 2025. "A neural network method for the escape rate in metastable systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 674(C).
    5. Zhouzhou Gu & Mathieu Lauri`ere & Sebastian Merkel & Jonathan Payne, 2024. "Global Solutions to Master Equations for Continuous Time Heterogeneous Agent Macroeconomic Models," Papers 2406.13726, arXiv.org.
    6. Beatriz Salvador & Cornelis W. Oosterlee & Remco van der Meer, 2020. "Financial Option Valuation by Unsupervised Learning with Artificial Neural Networks," Mathematics, MDPI, vol. 9(1), pages 1-20, December.
    7. Sebastian Jaimungal & Yuri F. Saporito & Max O. Souza & Yuri Thamsten, 2023. "Optimal Trading in Automatic Market Makers with Deep Learning," Papers 2304.02180, arXiv.org.
    8. Choi, So Eun & Jang, Hyun Jin & Lee, Kyungsub & Zheng, Harry, 2021. "Optimal market-Making strategies under synchronised order arrivals with deep neural networks," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    9. Chuhao Sun & Asaf Cohen & James Stokes & Shravan Veerapaneni, 2023. "Quantum-inspired nonlinear Galerkin ansatz for high-dimensional HJB equations," Papers 2311.12239, arXiv.org.
    10. Parand, K. & Aghaei, A.A. & Jani, M. & Ghodsi, A., 2021. "A new approach to the numerical solution of Fredholm integral equations using least squares-support vector regression," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 114-128.
    11. Patrick Cheridito & Jean-Loup Dupret & Donatien Hainaut, 2025. "Deep Learning for Continuous-Time Stochastic Control with Jumps," Papers 2505.15602, arXiv.org, revised Jan 2026.
    12. Emmanuil H. Georgoulis & Antonis Papapantoleon & Costas Smaragdakis, 2024. "A deep implicit-explicit minimizing movement method for option pricing in jump-diffusion models," Papers 2401.06740, arXiv.org, revised Mar 2025.
    13. William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Papers 2102.09851, arXiv.org, revised Feb 2021.
    14. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
    15. Kumar, Rakesh & Dhua, Sudarshan, 2025. "Dynamic analysis of Hashimoto’s Thyroiditis bio-mathematical model using artificial neural network," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 229(C), pages 235-245.
    16. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    17. Daeyung Gim & Hyungbin Park, 2021. "A deep learning algorithm for optimal investment strategies," Papers 2101.12387, arXiv.org.
    18. Wenxuan Zhang & Yixiao Guo & Benzhuo Lu, 2025. "Exact Terminal Condition Neural Network for American Option Pricing Based on the Black-Scholes-Merton Equations," Papers 2510.27132, arXiv.org.
    19. Bastien Baldacci & Joffrey Derchu & Iuliia Manziuk, 2020. "An approximate solution for options market-making in high dimension," Papers 2009.00907, arXiv.org.
    20. Alexandre Pannier & Cristopher Salvi, 2024. "A path-dependent PDE solver based on signature kernels," Papers 2403.11738, arXiv.org, revised Oct 2024.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:437:y:2023:i:c:s0096300322005884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.