IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2311.12239.html
   My bibliography  Save this paper

Quantum-inspired nonlinear Galerkin ansatz for high-dimensional HJB equations

Author

Listed:
  • Chuhao Sun
  • Asaf Cohen
  • James Stokes
  • Shravan Veerapaneni

Abstract

Neural networks are increasingly recognized as a powerful numerical solution technique for partial differential equations (PDEs) arising in diverse scientific computing domains, including quantum many-body physics. In the context of time-dependent PDEs, the dominant paradigm involves casting the approximate solution in terms of stochastic minimization of an objective function given by the norm of the PDE residual, viewed as a function of the neural network parameters. Recently, advancements have been made in the direction of an alternative approach which shares aspects of nonlinearly parametrized Galerkin methods and variational quantum Monte Carlo, especially for high-dimensional, time-dependent PDEs that extend beyond the usual scope of quantum physics. This paper is inspired by the potential of solving Hamilton-Jacobi-Bellman (HJB) PDEs using Neural Galerkin methods and commences the exploration of nonlinearly parametrized trial functions for which the evolution equations are analytically tractable. As a precursor to the Neural Galerkin scheme, we present trial functions with evolution equations that admit closed-form solutions, focusing on time-dependent HJB equations relevant to finance.

Suggested Citation

  • Chuhao Sun & Asaf Cohen & James Stokes & Shravan Veerapaneni, 2023. "Quantum-inspired nonlinear Galerkin ansatz for high-dimensional HJB equations," Papers 2311.12239, arXiv.org.
  • Handle: RePEc:arx:papers:2311.12239
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2311.12239
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thaleia Zariphopoulou, 2001. "A solution approach to valuation with unhedgeable risks," Finance and Stochastics, Springer, vol. 5(1), pages 61-82.
    2. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huyên Pham & Xavier Warin & Maximilien Germain, 2021. "Neural networks-based backward scheme for fully nonlinear PDEs," Partial Differential Equations and Applications, Springer, vol. 2(1), pages 1-24, February.
    2. William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Working Papers hal-03145949, HAL.
    3. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
    4. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    5. Kraft, Holger & Steffensen, Mogens, 2008. "How to invest optimally in corporate bonds: A reduced-form approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(2), pages 348-385, February.
    6. Wang, Yuanrong & Aste, Tomaso, 2023. "Dynamic portfolio optimization with inverse covariance clustering," LSE Research Online Documents on Economics 117701, London School of Economics and Political Science, LSE Library.
    7. Rong Du & Duy-Minh Dang, 2023. "Fourier Neural Network Approximation of Transition Densities in Finance," Papers 2309.03966, arXiv.org, revised Sep 2024.
    8. Gero Junike & Hauke Stier, 2024. "Enhancing Fourier pricing with machine learning," Papers 2412.05070, arXiv.org.
    9. Ali Al-Aradi & Adolfo Correia & Danilo de Frietas Naiff & Gabriel Jardim & Yuri Saporito, 2019. "Extensions of the Deep Galerkin Method," Papers 1912.01455, arXiv.org, revised Apr 2022.
    10. Katia Colaneri & Alessandra Cretarola & Benedetta Salterini, 2025. "Optimal investment and reinsurance under exponential forward preferences," Mathematics and Financial Economics, Springer, volume 19, number 1, September.
    11. Michael Monoyios, 2004. "Performance of utility-based strategies for hedging basis risk," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 245-255.
    12. Salah A. Faroughi & Ramin Soltanmohammadi & Pingki Datta & Seyed Kourosh Mahjour & Shirko Faroughi, 2023. "Physics-Informed Neural Networks with Periodic Activation Functions for Solute Transport in Heterogeneous Porous Media," Mathematics, MDPI, vol. 12(1), pages 1-23, December.
    13. Jiequn Han & Ruimeng Hu & Jihao Long, 2020. "Convergence of Deep Fictitious Play for Stochastic Differential Games," Papers 2008.05519, arXiv.org, revised Mar 2021.
    14. Johannes Muhle-Karbe & Max Reppen & H. Mete Soner, 2016. "A Primer on Portfolio Choice with Small Transaction Costs," Papers 1612.01302, arXiv.org, revised May 2017.
    15. Dehghani, Hamidreza & Zilian, Andreas, 2021. "A hybrid MGA-MSGD ANN training approach for approximate solution of linear elliptic PDEs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 398-417.
    16. Dariusz Zawisza, 2020. "On the parabolic equation for portfolio problems," Papers 2003.13317, arXiv.org, revised Oct 2020.
    17. Jesús Fernández-Villaverde & Galo Nuño & Jesse Perla, 2024. "Taming the Curse of Dimensionality: Quantitative Economics with Deep Learning," NBER Working Papers 33117, National Bureau of Economic Research, Inc.
    18. Holger Kraft & Mogens Steffensen, 2006. "Portfolio problems stopping at first hitting time with application to default risk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 123-150, February.
    19. Joshua Aurand & Yu‐Jui Huang, 2023. "Epstein‐Zin utility maximization on a random horizon," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1370-1411, October.
    20. Jialiang Luo & Harry Zheng, 2023. "Deep Neural Network Solution for Finite State Mean Field Game with Error Estimation," Dynamic Games and Applications, Springer, vol. 13(3), pages 859-896, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.12239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.