IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v430y2022ics0096300322003046.html
   My bibliography  Save this article

Observer-based fault-tolerant control for non-infinitely observable descriptor systems with unknown time-varying state and input delays

Author

Listed:
  • Lun Chan, Joseph Chang
  • Lee, Tae H.

Abstract

This paper presents a fault-tolerant control (FTC) scheme for a class of non-infinitely observable descriptor systems (NIODS) that is affected by unknown time-varying state and input delays. The NIODS is first transformed into a form facilitating the manipulation of design freedom inherent in its structure. Some of the system states are then treated as unknown inputs to form an infinitely observable reduced-order system. A sliding mode observer (SMO) is applied to estimate the states and faults based on measurable signals. Next, a memoryless controller is designed using these estimates. Design conditions for the SMO and controller are derived in the form of linear matrix inequalities. In the case where the state and input delays are different, the FTC scheme is designed to limit the effect of the mismatch in delays on the output. In the case of equivalent state and input delays, the FTC scheme is designed so that the system output asymptotically converges to zero. A simulated example is lastly performed to verify the scheme’s effectiveness.

Suggested Citation

  • Lun Chan, Joseph Chang & Lee, Tae H., 2022. "Observer-based fault-tolerant control for non-infinitely observable descriptor systems with unknown time-varying state and input delays," Applied Mathematics and Computation, Elsevier, vol. 430(C).
  • Handle: RePEc:eee:apmaco:v:430:y:2022:i:c:s0096300322003046
    DOI: 10.1016/j.amc.2022.127230
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322003046
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127230?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chan, Joseph Chang Lun & Tan, Chee Pin & Trinh, Hieu & Kamal, Md Abdus Samad & Chiew, Yeong Shiong, 2019. "Robust fault reconstruction for a class of non-infinitely observable descriptor systems using two sliding mode observers in cascade," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 78-92.
    2. Mathiyalagan, K. & Ragul, R., 2022. "Observer-based finite-time dissipativity for parabolic systems with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    3. Sun, Yuchen & Ma, Shuping, 2021. "Output regulation of switched singular systems based on extended state observer approach," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    4. Seifeddine Ben Warrad & Olfa Boubaker & Mihai Lungu & Saleh Mobayen, 2018. "Full and Reduced-Order Unknown Input Observer Design for Linear Time-Delay Systems with Multiple Delays," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-13, November.
    5. Li, Rongchang & Zhang, Qingling, 2018. "Robust H∞ sliding mode observer design for a class of Takagi–Sugeno fuzzy descriptor systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 158-178.
    6. Sun, Shaoxin & Wang, Yingchun & Zhang, Huaguang & Sun, Jiayue, 2020. "Multiple intermittent fault estimation and tolerant control for switched T-S fuzzy stochastic systems with multiple time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mei, Yu & Wang, Guanqi & Shen, Hao, 2023. "Adaptive Event-Triggered L2−L∞ Control of Semi-Markov Jump Distributed Parameter Systems," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    2. Mu, Yunfei & Zhang, Huaguang & Yan, Yuqing & Wang, Yingchun, 2023. "A novel design approach to state and fault estimation for interconnected systems using distributed observer," Applied Mathematics and Computation, Elsevier, vol. 449(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Che, Haochi & Huang, Jun & Zhao, Xudong & Ma, Xiang & Xu, Ning, 2020. "Functional interval observer for discrete-time systems with disturbances," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    2. Liu, Yu-An & Tang, Shengdao & Liu, Yufan & Kong, Qingkai & Wang, Jing, 2021. "Extended dissipative sliding mode control for nonlinear networked control systems via event-triggered mechanism with random uncertain measurement," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    3. Yu, Zhefeng & Zhao, Feng & Ding, Shihong & Chen, Xiangyong, 2022. "Adaptive pre-assigned finite-time control of uncertain nonlinear systems with unknown control gains," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    4. Obaid Alshammari & Mourad Kchaou & Houssem Jerbi & Sondess Ben Aoun & Víctor Leiva, 2022. "A Fuzzy Design for a Sliding Mode Observer-Based Control Scheme of Takagi-Sugeno Markov Jump Systems under Imperfect Premise Matching with Bio-Economic and Industrial Applications," Mathematics, MDPI, vol. 10(18), pages 1-28, September.
    5. Zhang, Jiancheng & Chadli, Mohammed & Wang, Yan, 2019. "A fixed-time observer for discrete-time singular systems with unknown inputs," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    6. Sun, Shaoxin & Li, Ting & Pang, Yongheng & Hua, Xingxing, 2022. "Multiple delay-dependent event-triggered finite-time H∞ filtering for uncertain networked random systems against state and input constraints," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    7. Wang, Xin & Zhuang, Guangming & Chen, Guoliang & Ma, Qian & Lu, Junwei, 2022. "Asynchronous mixed H∞ and passive control for fuzzy singular delayed Markovian jump system via hidden Markovian model mechanism," Applied Mathematics and Computation, Elsevier, vol. 429(C).
    8. Chan, Joseph Chang Lun & Tan, Chee Pin & Trinh, Hieu & Kamal, Md Abdus Samad & Chiew, Yeong Shiong, 2019. "Robust fault reconstruction for a class of non-infinitely observable descriptor systems using two sliding mode observers in cascade," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 78-92.
    9. Han, Jian & Liu, Xiuhua & Wei, Xinjiang & Zhang, Huifeng & Hu, Xin, 2021. "Adjustable dimension descriptor observer based fault estimation of nonlinear system with unknown input," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    10. Zhang, Zhi-Hui & Hao, Li-Ying & Guo, Mingjie, 2022. "Fault detection for uncertain nonlinear systems via recursive observer and tight threshold," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    11. Pan, Yingnan & Yang, Guang-Hong, 2019. "Event-based output tracking control for fuzzy networked control systems with network-induced delays," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 513-530.
    12. Selvaraj, P. & Kwon, O.M. & Lee, S.H. & Sakthivel, R., 2022. "Disturbance rejections of interval type-2 fuzzy systems under event-triggered control scheme," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    13. Sun, Yuchen & Ma, Shuping, 2021. "Output regulation of switched singular systems based on extended state observer approach," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    14. Li, Jiahao & Liu, Yu & Yu, Jinyong & Sun, Yiming & Liu, Mengmeng, 2021. "A new result of terminal sliding mode finite-time state and fault estimation for a class of descriptor switched systems," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    15. de Oliveira, Fúlvia S.S. & Souza, Fernando O., 2020. "Further refinements in stability conditions for time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    16. Deng, Yalin & Zhang, Huasheng & Dai, Yuzhen & Li, Yuanen, 2022. "Interval stability/stabilization for linear stochastic switched systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    17. Nguyen, Cuong M. & Tan, Chee Pin & Trinh, Hieu, 2021. "State and delay reconstruction for nonlinear systems with input delays," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    18. Sun, Qingdong & Ren, Junchao & Zhao, Feng, 2022. "Sliding mode control of discrete-time interval type-2 fuzzy Markov jump systems with the preview target signal," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    19. Ye, Dan & Li, Xiehuan, 2020. "Event-triggered fault detection for continuous-time networked polynomial-fuzzy-model-based systems," Applied Mathematics and Computation, Elsevier, vol. 366(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:430:y:2022:i:c:s0096300322003046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.