IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v413y2022ics0096300321006895.html
   My bibliography  Save this article

Observer-based finite-time dissipativity for parabolic systems with time-varying delays

Author

Listed:
  • Mathiyalagan, K.
  • Ragul, R.

Abstract

In this paper, an observer based dissipativity analysis for dynamical systems governed by partial differential equations (PDEs) of parabolic type is investigated. A second order PDEs with time-varying delays and external disturbances is considered. By constructing an appropriate Lyapunov-Krasovskii functional (LKF), a new set of sufficient conditions are obtained to guarantee the considered system is finite-time bounded (FTB) and finite-time extended dissipative (FTED). The observer based feedback controller design and dissipativity results are derived using the singular value decomposition (SVD) and linear matrix inequalities (LMIs). Finally, the results are verified with numerical example.

Suggested Citation

  • Mathiyalagan, K. & Ragul, R., 2022. "Observer-based finite-time dissipativity for parabolic systems with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 413(C).
  • Handle: RePEc:eee:apmaco:v:413:y:2022:i:c:s0096300321006895
    DOI: 10.1016/j.amc.2021.126605
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321006895
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126605?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shan, Yaonan & She, Kun & Zhong, Shouming & Zhong, Qishui & Shi, Kaibo & Zhao, Can, 2018. "Exponential stability and extended dissipativity criteria for generalized discrete-time neural networks with additive time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 145-168.
    2. Stavroulakis, P. & Tzafestas, S., 1980. "Distributed-parameter observer-based control implementation using finite spatial measurements," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 22(4), pages 373-379.
    3. Zhang, Yu & Feng, Zhi Guo & Yang, Xinsong & Alsaadi, Fuad E. & Ahmad, Bashir, 2018. "Finite-time stabilization for a class of nonlinear systems via optimal control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 146(C), pages 14-26.
    4. Hu, Taotao & He, Zheng & Zhang, Xiaojun & Zhong, Shouming, 2020. "Finite-time stability for fractional-order complex-valued neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 365(C).
    5. Lü, Shao-Yu & Jin, Xiao-Zheng & Wang, Hai & Deng, Chao, 2021. "Robust adaptive estimation and tracking control for perturbed cyber-physical systems against denial of service," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    6. Kumar, S. Vimal & Anthoni, S. Marshal & Raja, R., 2019. "Dissipative analysis for aircraft flight control systems with randomly occurring uncertainties via non-fragile sampled-data control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 217-226.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lun Chan, Joseph Chang & Lee, Tae H., 2022. "Observer-based fault-tolerant control for non-infinitely observable descriptor systems with unknown time-varying state and input delays," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    2. Yu, Zhefeng & Zhao, Feng & Ding, Shihong & Chen, Xiangyong, 2022. "Adaptive pre-assigned finite-time control of uncertain nonlinear systems with unknown control gains," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    3. Wang, Xin & Zhuang, Guangming & Chen, Guoliang & Ma, Qian & Lu, Junwei, 2022. "Asynchronous mixed H∞ and passive control for fuzzy singular delayed Markovian jump system via hidden Markovian model mechanism," Applied Mathematics and Computation, Elsevier, vol. 429(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tzafestas, S.G., 1983. "Walsh transform theory and its application to systems analysis and control: an overview," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 25(3), pages 214-225.
    2. Udhayakumar, K. & Rakkiyappan, R. & Li, Xiaodi & Cao, Jinde, 2021. "Mutiple ψ-type stability of fractional-order quaternion-valued neural networks," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    3. Yang, Wei & Cui, Guozeng & Ma, Qian & Ma, Jiali & Tao, Chongben, 2022. "Finite-time adaptive event-triggered command filtered backstepping control for a QUAV," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    4. Stavroulakis, P. & Tzafestas, S.G., 1982. "Singularity perturbed large-scale distributed-parameter control systems: an application to nuclear reactor control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 24(4), pages 303-313.
    5. Li, Mingyue & Chen, Huanzhen & Li, Xiaodi, 2021. "Exponential stability of nonlinear systems involving partial unmeasurable states via impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Zhang, Wanli & Yang, Xinsong & Yang, Shiju & Alsaedi, Ahmed, 2021. "Finite-time and fixed-time bipartite synchronization of complex networks with signed graphs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 319-329.
    7. Tan, Lihua & Li, Chuandong & Huang, Junjian & Huang, Tingwen, 2021. "Output feedback leader-following consensus for nonlinear stochastic multiagent systems: The event-triggered method," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    8. Xiao, Shuyi & Dong, Jiuxiang, 2023. "Distributed output-feedback resilient fault-tolerant tracking control of uncertain heterogeneous linear MASs under directed topologies and DoS attacks," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    9. Zhou, Ya & Wan, Xiaoxiao & Huang, Chuangxia & Yang, Xinsong, 2020. "Finite-time stochastic synchronization of dynamic networks with nonlinear coupling strength via quantized intermittent control," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    10. Nguyen, Khanh Hieu & Kim, Sung Hyun, 2024. "Improved stability and stabilization criteria of sampled-data control systems based on an enhanced looped-functional," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 69-81.
    11. Ma, Yong-Sheng & Che, Wei-Wei & Deng, Chao, 2022. "Observer-Based fuzzy containment control for nonlinear networked mass under dos attacks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    12. Shuang Wang & Hai Zhang & Weiwei Zhang & Hongmei Zhang, 2021. "Finite-Time Projective Synchronization of Caputo Type Fractional Complex-Valued Delayed Neural Networks," Mathematics, MDPI, vol. 9(12), pages 1-14, June.
    13. Jia, You & Wu, Huaiqin & Cao, Jinde, 2020. "Non-fragile robust finite-time synchronization for fractional-order discontinuous complex networks with multi-weights and uncertain couplings under asynchronous switching," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    14. Arthi, G. & Suganya, K., 2021. "Controllability of higher order stochastic fractional control delay systems involving damping behavior," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    15. Sakthivel, R. & Suveetha, V.T. & Nithya, V. & Sakthivel, R., 2021. "Finite-time reliable filtering for Takagi–Sugeno fuzzy semi-Markovian jump systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 403-418.
    16. Li, Xuemei & Liu, Xinge & Wang, Fengxian, 2023. "Anti-synchronization of fractional-order complex-valued neural networks with a leakage delay and time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    17. Zhang, Hai & Chen, Xinbin & Ye, Renyu & Stamova, Ivanka & Cao, Jinde, 2023. "Adaptive quasi-synchronization analysis for Caputo delayed Cohen–Grossberg neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 49-65.
    18. Călin-Adrian Popa & Eva Kaslik, 2020. "Finite-Time Mittag–Leffler Synchronization of Neutral-Type Fractional-Order Neural Networks with Leakage Delay and Time-Varying Delays," Mathematics, MDPI, vol. 8(7), pages 1-17, July.
    19. Visakamoorthi, B. & Muthukumar, P., 2022. "Fuzzy sampled-data control for single-master multi-slave teleoperation systems with stochastic actuator faults," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 375-387.
    20. Tzafestas, S.G. & Stavroulakis, P., 1981. "Partioned adaptive filtering and control of distributed systems with space-dependent unknown parameters," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 23(2), pages 206-212.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:413:y:2022:i:c:s0096300321006895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.