IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v198y2022icp375-387.html
   My bibliography  Save this article

Fuzzy sampled-data control for single-master multi-slave teleoperation systems with stochastic actuator faults

Author

Listed:
  • Visakamoorthi, B.
  • Muthukumar, P.

Abstract

This article investigates the sampled-data control design for single-master multi-slave teleoperation systems with stochastic actuator faults and time-varying delays. At first, the nonlinear bilateral teleoperation systems are modeled as Takagi–Sugeno (T–S) fuzzy systems through membership functions. The decentralized sampled-data control technique is proposed with actuator faults occurring in both master and slave robots. Here, the stochastic faults satisfy certain probability conditions and the forward and backward delays between the master and slaves are time-variant and asymmetric. Next, the delay-dependent Lyapunov–Krasovskii functionals (LKFs) are constructed for the proposed fuzzy model to obtain sufficient stability conditions in terms of linear matrix inequality (LMI). Finally, the reliability and superiority of the proposed method are illustrated by numerical results.

Suggested Citation

  • Visakamoorthi, B. & Muthukumar, P., 2022. "Fuzzy sampled-data control for single-master multi-slave teleoperation systems with stochastic actuator faults," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 375-387.
  • Handle: RePEc:eee:matcom:v:198:y:2022:i:c:p:375-387
    DOI: 10.1016/j.matcom.2022.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422001045
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vimal Kumar, S. & Raja, R. & Marshal Anthoni, S. & Cao, Jinde & Tu, Zhengwen, 2018. "Robust finite-time non-fragile sampled-data control for T-S fuzzy flexible spacecraft model with stochastic actuator faults," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 483-497.
    2. Kumar, S. Vimal & Anthoni, S. Marshal & Raja, R., 2019. "Dissipative analysis for aircraft flight control systems with randomly occurring uncertainties via non-fragile sampled-data control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 217-226.
    3. Duan, Wenyong & Li, Yan & Sun, Yi & Chen, Jian & Yang, Xiaodong, 2020. "Enhanced master–slave synchronization criteria for chaotic Lur’e systems based on time-delayed feedback control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 276-294.
    4. Senouci, Abdelkader & Boukabou, Abdelkrim, 2014. "Predictive control and synchronization of chaotic and hyperchaotic systems based on a T–S fuzzy model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 105(C), pages 62-78.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen, Khanh Hieu & Kim, Sung Hyun, 2024. "Improved stability and stabilization criteria of sampled-data control systems based on an enhanced looped-functional," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 69-81.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    2. Runzi Luo & Jiaojiao Fu & Haipeng Su, 2019. "The Exponential Stabilization of a Class of n-D Chaotic Systems via the Exact Solution Method," Complexity, Hindawi, vol. 2019, pages 1-7, May.
    3. Zheng, Yongai & Ji, Zhilin, 2016. "Predictive control of fractional-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 307-313.
    4. Mathiyalagan, K. & Ragul, R., 2022. "Observer-based finite-time dissipativity for parabolic systems with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    5. Lu, Ke & Du, Pingping & Cao, Jinde & Zou, Qiming & He, Tianjia & Huang, Wei, 2019. "A novel traffic signal split approach based on Explicit Model Predictive Control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 105-114.
    6. Visakamoorthi, B. & Subramanian, K. & Muthukumar, P., 2022. "Hidden Markov model based non-fragile sampled-data control design for mode-dependent fuzzy systems with actuator faults," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    7. Vafamand, Navid & Khorshidi, Shapour & Khayatian, Alireza, 2018. "Secure communication for non-ideal channel via robust TS fuzzy observer-based hyperchaotic synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 116-124.
    8. Kumar, S. Vimal & Anthoni, S. Marshal & Raja, R., 2019. "Dissipative analysis for aircraft flight control systems with randomly occurring uncertainties via non-fragile sampled-data control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 217-226.
    9. Xu, Xiaofeng & Chen, Mou & Li, Tao & Wu, Qingxian, 2021. "Composite fault tolerant attitude control for flexible satellite system under disturbance and input delay," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    10. Nguyen, Khanh Hieu & Kim, Sung Hyun, 2024. "Improved stability and stabilization criteria of sampled-data control systems based on an enhanced looped-functional," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 69-81.
    11. Zamart, Chantapish & Botmart, Thongchai & Weera, Wajaree & Charoensin, Suphachai, 2022. "New delay-dependent conditions for finite-time extended dissipativity based non-fragile feedback control for neural networks with mixed interval time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 684-713.
    12. Miaadi, Foued & Li, Xiaodi, 2021. "Impulsive effect on fixed-time control for distributed delay uncertain static neural networks with leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    13. Wang, Yao & Guo, Jun & Liu, Guobao & Lu, Junwei & Li, Fangyuan, 2021. "Finite-time sampled-data synchronization for uncertain neutral-type semi-Markovian jump neural networks with mixed time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    14. Miaadi, Foued & Li, Xiaodi, 2021. "Impulse-dependent settling-time for finite time stabilization of uncertain impulsive static neural networks with leakage delay and distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 259-276.
    15. Messadi, M. & Mellit, A., 2017. "Control of chaos in an induction motor system with LMI predictive control and experimental circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 51-58.
    16. Peng, Shuo & Wang, Qingzhi & Fu, Baozeng, 2022. "Exponential stabilization of chaotic systems based on fuzzy time-triggered intermittent control," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    17. Cao, Yang & Sriraman, R. & Samidurai, R., 2020. "Stability and stabilization analysis of nonlinear time-delay systems with randomly occurring controller gain fluctuation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 36-51.
    18. Yang, Te & Wang, Zhen & Xia, Jianwei & Shen, Hao, 2023. "Sampled-data exponential synchronization of stochastic chaotic Lur’e delayed systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 44-57.
    19. Javaid, Umair & Zhen, Ziyang & Shahid, Sami & Ibrahim, Dauda Sh & Ijaz, Salman, 2024. "Observer-based attitude control of spacecraft under actuator dead zone and misalignment faults," Applied Mathematics and Computation, Elsevier, vol. 465(C).
    20. Jiao Xu & Tao Song & Jiaxin Wang, 2024. "Finite-Time Fuzzy Fault-Tolerant Control for Nonlinear Flexible Spacecraft System with Stochastic Actuator Faults," Mathematics, MDPI, vol. 12(4), pages 1-25, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:198:y:2022:i:c:p:375-387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.