IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v414y2022ics0096300321007499.html
   My bibliography  Save this article

Fault detection for uncertain nonlinear systems via recursive observer and tight threshold

Author

Listed:
  • Zhang, Zhi-Hui
  • Hao, Li-Ying
  • Guo, Mingjie

Abstract

This paper presents an fault detection (FD) method for a class of uncertain nonlinear systems with unmatched nonlinear fault functions and disturbances. A recursive FD observer is designed with predetermined and small output estimation error. The nonlinear observer gain function is achieved by introducing predetermined output estimation accuracy-dependent nonnegative functions. Combining Lyapunov functions, it is shown that the absolute value of the residual signal is equal or lesser than tight threshold before fault occurrence. The FD scheme is proposed following fault detectability analysis, simulation example indicates the validity of the proposed method.

Suggested Citation

  • Zhang, Zhi-Hui & Hao, Li-Ying & Guo, Mingjie, 2022. "Fault detection for uncertain nonlinear systems via recursive observer and tight threshold," Applied Mathematics and Computation, Elsevier, vol. 414(C).
  • Handle: RePEc:eee:apmaco:v:414:y:2022:i:c:s0096300321007499
    DOI: 10.1016/j.amc.2021.126665
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321007499
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126665?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Dongsheng, 2017. "Fault detection for discrete-time linear systems based on descriptor observer approach," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 575-585.
    2. Zhao, Nan-Nan & Wu, Li-Bing & Ouyang, Xin-Yu & Yan, Yan & Zhang, Rui-Yan, 2019. "Finite-time adaptive fuzzy tracking control for nonlinear systems with disturbances and dead-zone nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    3. Li, Jian & Guo, Xinxin & Chen, Cong & Su, Qingyu, 2019. "Robust fault diagnosis for switched systems based on sliding mode observer," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 193-203.
    4. Sun, Shaoxin & Wang, Yingchun & Zhang, Huaguang & Sun, Jiayue, 2020. "Multiple intermittent fault estimation and tolerant control for switched T-S fuzzy stochastic systems with multiple time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Ming & Niu, Yichun & Sheng, Li & Zhou, Donghua, 2022. "Quantitative analysis of incipient fault detectability for time-varying stochastic systems based on weighted moving average approach," Applied Mathematics and Computation, Elsevier, vol. 434(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jiancheng & Chadli, Mohammed & Wang, Yan, 2019. "A fixed-time observer for discrete-time singular systems with unknown inputs," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    2. Du, Dongsheng & Cocquempot, Vincent & Jiang, Bin, 2019. "Robust fault estimation observer design for switched systems with unknown input," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 70-83.
    3. Xing, Mingqi & Wang, Yanqian & Zhuang, Guangming & Chen, Fu, 2021. "Event-based asynchronous and resilient filtering for singular Markov jump LPV systems against deception attacks," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    4. Sun, Shaoxin & Li, Ting & Pang, Yongheng & Hua, Xingxing, 2022. "Multiple delay-dependent event-triggered finite-time H∞ filtering for uncertain networked random systems against state and input constraints," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    5. Lun Chan, Joseph Chang & Lee, Tae H., 2022. "Observer-based fault-tolerant control for non-infinitely observable descriptor systems with unknown time-varying state and input delays," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    6. Chan, Joseph Chang Lun & Tan, Chee Pin & Trinh, Hieu & Kamal, Md Abdus Samad & Chiew, Yeong Shiong, 2019. "Robust fault reconstruction for a class of non-infinitely observable descriptor systems using two sliding mode observers in cascade," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 78-92.
    7. Li, Jian & Wu, Chun-Yu, 2017. "Finite-time fault detection filter design for discrete-time interconnected systems with average dwell time," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 259-270.
    8. Li, Yalu & Li, Haitao & Li, Yuanyuan, 2021. "Constrained set controllability of logical control networks with state constraints and its applications," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    9. Wang, Yingchun & Zhang, Jiaxin & Zhang, Huaguang & Xie, Xiangpeng, 2021. "Finite-time adaptive neural control for nonstrict-feedback stochastic nonlinear systems with input delay and output constraints," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    10. Yang, Yawei & Lin, Chong & Chen, Bing & Zhao, Xin, 2020. "H∞ observer design for uncertain one-sided Lipschitz nonlinear systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    11. Xu, Tianshu & Xia, Jianwei & Wang, Sanxia & Lian, Yuxiao & Zhang, Huasheng, 2020. "Extended dissipativity-based non-fragile sampled-data control of fuzzy Markovian jump systems with incomplete transition rates," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    12. Lei, Yanfang & Li, Junmin & Zhao, Ailiang, 2022. "Spatiotemporal fault detection, estimation and control for nonlinear reaction-diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    13. Selvaraj, P. & Kwon, O.M. & Lee, S.H. & Sakthivel, R., 2022. "Disturbance rejections of interval type-2 fuzzy systems under event-triggered control scheme," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    14. Xiaoyu Zhang & Shuiping Xiong, 2023. "Output Feedback Control Design for Switched Systems with Unmatched Uncertainties Based on the Switched Robust Integral Sliding Mode," Mathematics, MDPI, vol. 11(22), pages 1-17, November.
    15. Li, Jiahao & Liu, Yu & Yu, Jinyong & Sun, Yiming & Liu, Mengmeng, 2021. "A new result of terminal sliding mode finite-time state and fault estimation for a class of descriptor switched systems," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    16. Fu, Yingying & Li, Jing & Li, Xiaobo & Wu, Shuiyan, 2023. "Dynamic event-triggered adaptive control for uncertain stochastic nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    17. Xiong, Jun & Chang, Xiao-Heng & Yi, Xiaojian, 2018. "Design of robust nonfragile fault detection filter for uncertain dynamic systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 774-788.
    18. Wang, Jiancheng & He, Shuping & Luan, Xiaoli & Liu, Fei, 2020. "Fuzzy fault detection of conic-type nonlinear systems within the finite frequency domain," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    19. Deng, Yalin & Zhang, Huasheng & Dai, Yuzhen & Li, Yuanen, 2022. "Interval stability/stabilization for linear stochastic switched systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    20. Wang, Zhichuang & Chen, Guoliang & Ba, Hezhen, 2019. "Stability analysis of nonlinear switched systems with sampled-data controllers," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 297-309.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:414:y:2022:i:c:s0096300321007499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.