IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v396y2021ics0096300320308523.html
   My bibliography  Save this article

Adjustable dimension descriptor observer based fault estimation of nonlinear system with unknown input

Author

Listed:
  • Han, Jian
  • Liu, Xiuhua
  • Wei, Xinjiang
  • Zhang, Huifeng
  • Hu, Xin

Abstract

In this paper, the fault estimation problem is considered for nonlinear system with process fault, sensor fault and unknown input. A novel adjustable dimension augmented descriptor observer is designed. Based on the proposed observer, the system state, process and sensor faults can be estimated simultaneously, and the unknown input can be decoupled from the error dynamic. The observer parameters are calculated by solving LMI and matrix equations. The observer order can be selected in a certain range, which is helpful to achieve the compromise between the estimation cost and accuracy. At last, two simulation examples are listed to show the effectiveness of the proposed approach.

Suggested Citation

  • Han, Jian & Liu, Xiuhua & Wei, Xinjiang & Zhang, Huifeng & Hu, Xin, 2021. "Adjustable dimension descriptor observer based fault estimation of nonlinear system with unknown input," Applied Mathematics and Computation, Elsevier, vol. 396(C).
  • Handle: RePEc:eee:apmaco:v:396:y:2021:i:c:s0096300320308523
    DOI: 10.1016/j.amc.2020.125899
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320308523
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125899?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jing & Liang, Kun & Huang, Xia & Wang, Zhen & Shen, Hao, 2018. "Dissipative fault-tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 247-262.
    2. Chan, Joseph Chang Lun & Tan, Chee Pin & Trinh, Hieu & Kamal, Md Abdus Samad & Chiew, Yeong Shiong, 2019. "Robust fault reconstruction for a class of non-infinitely observable descriptor systems using two sliding mode observers in cascade," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 78-92.
    3. Xiong, Jun & Chang, Xiao-Heng & Yi, Xiaojian, 2018. "Design of robust nonfragile fault detection filter for uncertain dynamic systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 774-788.
    4. Du, Dongsheng & Cocquempot, Vincent & Jiang, Bin, 2019. "Robust fault estimation observer design for switched systems with unknown input," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 70-83.
    5. Li, Tao & Dai, Zhuxiang & Song, Gongfei & Du, Haiping, 2019. "Simultaneous disturbance estimation and fault reconstruction using probability density functions," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jiahao & Liu, Yu & Yu, Jinyong & Sun, Yiming & Liu, Mengmeng, 2021. "A new result of terminal sliding mode finite-time state and fault estimation for a class of descriptor switched systems," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    2. Zhang, Jiancheng & Chadli, Mohammed & Wang, Yan, 2019. "A fixed-time observer for discrete-time singular systems with unknown inputs," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    3. Du, Dongsheng & Cocquempot, Vincent & Jiang, Bin, 2019. "Robust fault estimation observer design for switched systems with unknown input," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 70-83.
    4. Sakthivel, Rathinasamy & Suveetha, V.T. & Nithya, Venkatesh & Sakthivel, Ramalingam, 2020. "Finite-time fault detection filter design for complex systems with multiple stochastic communication and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    5. Fu, Xiaozheng & Zhu, Quanxin & Guo, Yingxin, 2019. "Stabilization of stochastic functional differential systems with delayed impulses," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 776-789.
    6. Jiao, Shiyu & Shen, Hao & Wei, Yunliang & Huang, Xia & Wang, Zhen, 2018. "Further results on dissipativity and stability analysis of Markov jump generalized neural networks with time-varying interval delays," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 338-350.
    7. Li, Tao & Tang, Xiaoling & Qian, Wei & Fei, Shumin, 2019. "Hybrid-delay-dependent approach to synchronization in distributed delay neutral neural networks," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 449-463.
    8. Yueping Sun & Li Ma & Dean Zhao & Shihong Ding, 2018. "A Compound Controller Design for a Buck Converter," Energies, MDPI, vol. 11(9), pages 1-17, September.
    9. Xia, ZeLiang & He, Shuping, 2022. "Finite-time asynchronous H∞ fault-tolerant control for nonlinear hidden markov jump systems with actuator and sensor faults," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    10. Lun Chan, Joseph Chang & Lee, Tae H., 2022. "Observer-based fault-tolerant control for non-infinitely observable descriptor systems with unknown time-varying state and input delays," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    11. Ma, Zhen-Lei & Li, Xiao-Jian, 2022. "Data-driven fault detection for large-scale network systems: A mixed optimization approach," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    12. Zhang, Dian & Cheng, Jun & Ki Ahn, Choon & Ni, Hongjie, 2019. "A flexible terminal approach to stochastic stability and stabilization of continuous-time semi-Markovian jump systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 191-205.
    13. Yang, Yi & Li, Xiaohua & Liu, Xiaoping, 2022. "Decentralized finite-time connective tracking control with prescribed settling time for p-normal form stochastic large-scale systems," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    14. Yan, Yan & Wu, Libing & Yan, Weijun & Hu, Yuhan & Zhao, Nannan & Chen, Ming, 2022. "Finite-time event-triggered fault-tolerant control for a family of pure-feedback systems," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    15. Han, Yunrui & Zhao, Ying & Wang, Peng, 2021. "Finite-time rate anti-bump switching control for switched systems," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    16. Xia, Weifeng & Xu, Shengyuan & Lu, Junwei & Li, Yongmin & Chu, Yuming & Zhang, Zhengqiang, 2021. "Event-triggered filtering for discrete-time Markovian jump systems with additive time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    17. Li, Tao & Dai, Zhuxiang & Song, Gongfei & Du, Haiping, 2019. "Simultaneous disturbance estimation and fault reconstruction using probability density functions," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    18. Lu, Jianquan & Guo, Xing & Huang, Tingwen & Wang, Zhen, 2019. "Consensus of signed networked multi-agent systems with nonlinear coupling and communication delays," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 153-162.
    19. Ge, Chao & Shi, Yanpen & Park, Ju H. & Hua, Changchun, 2019. "Robust H∞ stabilization for T-S fuzzy systems with time-varying delays and memory sampled-data control," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 500-512.
    20. Joby, Maya & Santra, Srimanta & Anthoni, S. Marshal, 2021. "Finite-time contractive boundedness of extracorporeal blood circulation process," Applied Mathematics and Computation, Elsevier, vol. 388(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:396:y:2021:i:c:s0096300320308523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.