IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v393y2021ics0096300320307074.html
   My bibliography  Save this article

Impact of heat source on combined convection flow inside wavy-walled cavity filled with nanofluids via heatline concept

Author

Listed:
  • Azizul, Fatin M.
  • Alsabery, Ammar I.
  • Hashim, Ishak
  • Chamkha, Ali J.

Abstract

The appearance of a heat source at the bottom of a cavity against the cold part at the top wavy surface is examined in this work. The heat transportation, velocity of the fluid, and the temperature behaviour toward the mixed convection of nanofluids are obtained from the simulation of the Galerkin finite element technique and the Navier-Stokes equations. The other surfaces are considered adiabatic as well as both sides of the lid-driven cavity. It should be noted that the Grashof number, the volume fraction of alumina-nanoparticles, and the differentially-moving vertical walls are fixed at 105,0.02, the upward (right) and downward (left), respectively. To verify the computational code of derivation, the experimental and theoretical data from other researchers are compared. The results of the non-primitive variables, including the Richardson number, Reynolds number, number of undulations, dimensionless length, and the location of the heat source are compared. The numerical results indicate that larger values of the Richardson number and the Reynolds number enhance the rate of heat transfer. Not only two waves appear at the upper surface, but the heat source located at the centre with optimum height causes the entire cavity to have maximum heat transfer performance. The current problem is solved to benefit the installation of microelectronic cooling of a water-to-air heat exchanger or a pin-fin MHS heat transfer media.

Suggested Citation

  • Azizul, Fatin M. & Alsabery, Ammar I. & Hashim, Ishak & Chamkha, Ali J., 2021. "Impact of heat source on combined convection flow inside wavy-walled cavity filled with nanofluids via heatline concept," Applied Mathematics and Computation, Elsevier, vol. 393(C).
  • Handle: RePEc:eee:apmaco:v:393:y:2021:i:c:s0096300320307074
    DOI: 10.1016/j.amc.2020.125754
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320307074
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bozorg, Mehdi Vahabzadeh & Hossein Doranehgard, Mohammad & Hong, Kun & Xiong, Qingang, 2020. "CFD study of heat transfer and fluid flow in a parabolic trough solar receiver with internal annular porous structure and synthetic oil–Al2O3 nanofluid," Renewable Energy, Elsevier, vol. 145(C), pages 2598-2614.
    2. Sheremet, Mikhail A. & Revnic, Cornelia & Pop, Ioan, 2017. "Free convection in a porous wavy cavity filled with a nanofluid using Buongiorno's mathematical model with thermal dispersion effect," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nabeel Abed & Imran Afgan & Andrea Cioncolini & Hector Iacovides & Adel Nasser, 2020. "Assessment and Evaluation of the Thermal Performance of Various Working Fluids in Parabolic Trough Collectors of Solar Thermal Power Plants under Non-Uniform Heat Flux Distribution Conditions," Energies, MDPI, vol. 13(15), pages 1-29, July.
    2. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Farrell, C.C. & Osman, A.I. & Doherty, R. & Saad, M. & Zhang, X. & Murphy, A. & Harrison, J. & Vennard, A.S.M. & Kumaravel, V. & Al-Muhtaseb, A.H. & Rooney, D.W., 2020. "Technical challenges and opportunities in realising a circular economy for waste photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    4. Khademi, Ramin & Razminia, Abolhassan & Shiryaev, Vladimir I., 2020. "Conjugate-mixed convection of nanofluid flow over an inclined flat plate in porous media," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    5. Pal, S.K. & Bhattacharyya, S. & Pop, I., 2019. "A numerical study on non-homogeneous model for the conjugate-mixed convection of a Cu-water nanofluid in an enclosure with thick wavy wall," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 219-234.
    6. Aly, Abdelraheem M. & Raizah, Z.A.S., 2020. "Incompressible smoothed particle hydrodynamics simulation of natural convection in a nanofluid-filled complex wavy porous cavity with inner solid particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    7. Jawali C. Umavathi & Mikhail A. Sheremet, 2023. "Linear Model for Two-Layer Porous Bed Suspended with Nano Sized Particles," Energies, MDPI, vol. 16(4), pages 1-24, February.
    8. Yu, Qiang, 2021. "A decoupled wavelet approach for multiple physical flow fields of binary nanofluid in double-diffusive convection," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    9. Norouzi, Amir Mohammad & Siavashi, Majid & Ahmadi, Rouhollah & Tahmasbi, Milad, 2021. "Experimental study of a parabolic trough solar collector with rotating absorber tube," Renewable Energy, Elsevier, vol. 168(C), pages 734-749.
    10. Shaaban, S., 2021. "Enhancement of the solar trough collector efficiency by optimizing the reflecting mirror profile," Renewable Energy, Elsevier, vol. 176(C), pages 40-49.
    11. Peng, Hao & Li, Meilin & Liang, Xingang, 2020. "Thermal-hydraulic and thermodynamic performance of parabolic trough solar receiver partially filled with gradient metal foam," Energy, Elsevier, vol. 211(C).
    12. Xiao, Hui & Liu, Peng & Liu, Zhichun & Liu, Wei, 2021. "Performance analyses in parabolic trough collectors by inserting novel inclined curved-twisted baffles," Renewable Energy, Elsevier, vol. 165(P2), pages 14-27.
    13. Abu-Hamdeh, Nidal H. & Bantan, Rashad A.R. & Khoshvaght-Aliabadi, Morteza & Alimoradi, Ashkan, 2020. "Effects of ribs on thermal performance of curved absorber tube used in cylindrical solar collectors," Renewable Energy, Elsevier, vol. 161(C), pages 1260-1275.
    14. Zhu, Lanlan & Awais, Muhammad & Javed, Hafiz Muhammad Asif & Mustafa, Muhammad Salman & Tlili, Iskander & Khan, Sami Ullah & Safdari Shadloo, Mostafa, 2020. "Photo-catalytic pretreatment of biomass for anaerobic digestion using visible light and Nickle oxide (NiOx) nanoparticles prepared by sol gel method," Renewable Energy, Elsevier, vol. 154(C), pages 128-135.
    15. Amein, Hamza & Kassem, Mahmoud A. & Ali, Shady & Hassan, Muhammed A., 2021. "Integration of transparent insulation shells in linear solar receivers for enhanced energy and exergy performances," Renewable Energy, Elsevier, vol. 171(C), pages 344-359.
    16. Akram, Naveed & Montazer, Elham & Kazi, S.N. & Soudagar, Manzoore Elahi M. & Ahmed, Waqar & Zubir, Mohd Nashrul Mohd & Afzal, Asif & Muhammad, Mohd Ridha & Ali, Hafiz Muhammad & Márquez, Fausto Pedro , 2021. "Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids," Energy, Elsevier, vol. 227(C).
    17. S. A. M. Mehryan & Kaamran Raahemifar & Leila Sasani Gargari & Ahmad Hajjar & Mohamad El Kadri & Obai Younis & Mohammad Ghalambaz, 2021. "Latent Heat Phase Change Heat Transfer of a Nanoliquid with Nano–Encapsulated Phase Change Materials in a Wavy-Wall Enclosure with an Active Rotating Cylinder," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    18. Asadi, Asgar & Kadijani, Omid Nouri & Doranehgard, Mohammad Hossein & Bozorg, Mehdi Vahabzadeh & Xiong, Qingang & Shadloo, Mostafa Safdari & Li, Larry K.B., 2020. "Numerical study on the application of biodiesel and bioethanol in a multiple injection diesel engine," Renewable Energy, Elsevier, vol. 150(C), pages 1019-1029.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:393:y:2021:i:c:s0096300320307074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.