IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v384y2020ics0096300320303222.html
   My bibliography  Save this article

Social dilemma based on reputation and successive behavior

Author

Listed:
  • Pan, Qiuhui
  • Wang, Linpeng
  • He, Mingfeng

Abstract

We propose a cooperative evolution model in which successive behaviors influence reputation. There are two mechanisms to form reputation. One is enhancing the reputation of players who cooperate insistently, and reducing it when they defect continuously. The other is increasing reputation when defection is transformed into cooperation, and decreasing when cooperation is turned into defection. These two reputation formation mechanisms are simulated on the weak prisoner's dilemma game. We use a weighted average Fermi equation to describe the probability of players learning the strategy of a randomly selected neighbor. The results show that, under these two mechanisms, both the reward for reputation and emphasis on it have an impact on the cooperation. We find that encouraging “C after C” is better for cooperation than encouraging “C after D”, when people attach importance to reputation to a certain extent. Before reaching that threshold, however, encouraging “C after D” is better when reputation reward is large.

Suggested Citation

  • Pan, Qiuhui & Wang, Linpeng & He, Mingfeng, 2020. "Social dilemma based on reputation and successive behavior," Applied Mathematics and Computation, Elsevier, vol. 384(C).
  • Handle: RePEc:eee:apmaco:v:384:y:2020:i:c:s0096300320303222
    DOI: 10.1016/j.amc.2020.125358
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320303222
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125358?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jinzhuo & Meng, Haoran & Wang, Wei & Xie, Zhongwen & Yu, Qian, 2019. "Evolution of cooperation on independent networks: The influence of asymmetric information sharing updating mechanism," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 234-241.
    2. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    3. Ren, Yizhi & Chen, Xiangyu & Wang, Zhen & Shi, Benyun & Cui, Guanghai & Wu, Ting & Choo, Kim-Kwang Raymond, 2018. "Neighbor-considered migration facilitates cooperation in prisoner’s dilemma games," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 95-105.
    4. Tavoni, Alessandro & Dannenberg, Astrid & Kallis, Giorgos & Löschel, Andreas, 2011. "Inequality, communication and the avoidance of disastrous climate change," LSE Research Online Documents on Economics 37570, London School of Economics and Political Science, LSE Library.
    5. Li, Yumeng & Zhang, Jun & Perc, Matjaž, 2018. "Effects of compassion on the evolution of cooperation in spatial social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 437-443.
    6. Ernst Fehr & Simon Gächter, 2002. "Altruistic punishment in humans," Nature, Nature, vol. 415(6868), pages 137-140, January.
    7. Zhen Wang & Lin Wang & Zi-Yu Yin & Cheng-Yi Xia, 2012. "Inferring Reputation Promotes the Evolution of Cooperation in Spatial Social Dilemma Games," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    8. Fernando P. Santos & Francisco C. Santos & Jorge M. Pacheco, 2018. "Social norm complexity and past reputations in the evolution of cooperation," Nature, Nature, vol. 555(7695), pages 242-245, March.
    9. Li, Xiaopeng & Sun, Shiwen & Xia, Chengyi, 2019. "Reputation-based adaptive adjustment of link weight among individuals promotes the cooperation in spatial social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 810-820.
    10. Martin A. Nowak & Karl Sigmund, 1998. "Evolution of indirect reciprocity by image scoring," Nature, Nature, vol. 393(6685), pages 573-577, June.
    11. M.A. Nowak & K. Sigmund, 1998. "Evolution of Indirect Reciprocity by Image Scoring/ The Dynamics of Indirect Reciprocity," Working Papers ir98040, International Institute for Applied Systems Analysis.
    12. Bettina Rockenbach & Manfred Milinski, 2006. "The efficient interaction of indirect reciprocity and costly punishment," Nature, Nature, vol. 444(7120), pages 718-723, December.
    13. Du, Wen-Bo & Zheng, Hao-Ran & Hu, Mao-Bin, 2008. "Evolutionary prisoner’s dilemma game on weighted scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3796-3800.
    14. Ernst Fehr & Urs Fischbacher, 2003. "The nature of human altruism," Nature, Nature, vol. 425(6960), pages 785-791, October.
    15. Christian Hilbe & Torsten Röhl & Manfred Milinski, 2014. "Extortion subdues human players but is finally punished in the prisoner’s dilemma," Nature Communications, Nature, vol. 5(1), pages 1-6, September.
    16. Xiaojie Chen & Alana Schick & Michael Doebeli & Alistair Blachford & Long Wang, 2012. "Reputation-Based Conditional Interaction Supports Cooperation in Well-Mixed Prisoner’s Dilemmas," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-7, May.
    17. Chu, Chen & Zhai, Yao & Mu, Chunjiang & Hu, Die & Li, Tong & Shi, Lei, 2019. "Reputation-based popularity promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    18. Berger, Ulrich, 2011. "Learning to cooperate via indirect reciprocity," Games and Economic Behavior, Elsevier, vol. 72(1), pages 30-37, May.
    19. Ken Binmore, 1994. "Game Theory and the Social Contract, Volume 1: Playing Fair," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262023636, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chaoqian & Huang, Chaochao & Pan, Qiuhui & He, Mingfeng, 2022. "Modeling the social dilemma of involution on a square lattice," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Wang, Jianwei & Chen, Wei & Yu, Fengyuan & He, Jialu & Xu, Wenshu, 2022. "Wealth-based rule favors cooperation in costly public goods games when individual selection is inevitable," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    3. Han, Xu & Zhao, Xiaowei & Xia, Haoxiang, 2022. "Hybrid learning promotes cooperation in the spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    4. Bi, Yan & Yang, Hui, 2023. "Based on reputation consistent strategy times promotes cooperation in spatial prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    5. Lu, Shounan & Dai, Jianhua & Zhu, Ge & Guo, Li, 2023. "Investigating the effectiveness of interaction-efficiency-driven strategy updating under progressive-interaction for the evolution of the prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. Zhu, Wenqiang & Pan, Qiuhui & Song, Sha & He, Mingfeng, 2023. "Effects of exposure-based reward and punishment on the evolution of cooperation in prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    7. Zhu, Wenqiang & Pan, Qiuhui & He, Mingfeng, 2022. "Exposure-based reputation mechanism promotes the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    8. Shi, Zhenyu & Wei, Wei & Zheng, Hongwei & Zheng, Zhiming, 2023. "Bidirectional supervision: An effective method to suppress corruption and defection under the third party punishment mechanism of donation games," Applied Mathematics and Computation, Elsevier, vol. 450(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isamu Okada, 2020. "A Review of Theoretical Studies on Indirect Reciprocity," Games, MDPI, vol. 11(3), pages 1-17, July.
    2. Quan, Ji & Cui, Shihui & Chen, Wenman & Wang, Xianjia, 2023. "Reputation-based probabilistic punishment on the evolution of cooperation in the spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    3. Quan, Ji & Nie, Jiacheng & Chen, Wenman & Wang, Xianjia, 2022. "Keeping or reversing social norms promote cooperation by enhancing indirect reciprocity," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    4. Si, Zehua & He, Zhixue & Shen, Chen & Tanimoto, Jun, 2023. "Speculative defectors as unexpected insulators of super cooperators in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    5. Quan, Ji & Zhou, Yawen & Wang, Xianjia & Yang, Jian-Bo, 2020. "Information fusion based on reputation and payoff promotes cooperation in spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    6. Danilo Liuzzi & Aymeric Vié, 2022. "Staring at the Abyss: a neurocognitive grounded agent-based model of collective-risk social dilemma under the threat of environmental disaster," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(2), pages 613-637, April.
    7. Chen, Qiao & Chen, Tong & Wang, Yongjie, 2019. "Cleverly handling the donation information can promote cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 363-373.
    8. Misato Inaba & Nobuyuki Takahashi, 2019. "Linkage Based on the Kandori Norm Successfully Sustains Cooperation in Social Dilemmas," Games, MDPI, vol. 10(1), pages 1-15, February.
    9. Liu, Chengwei & Wang, Juan & Li, Xiaopeng & Xia, Chengyi, 2020. "The link weight adjustment considering historical strategy promotes the cooperation in the spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    10. Bašič, Aleksandra Murks & Kamal, Salahuddin M. & Almazroui, Mansour & Al-Marzouki, Fahad M., 2015. "A mathematical model for the climate change: Can unpredictability offset the temptations to pollute?," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 187-195.
    11. Quan, Ji & Yu, Junyu & Li, Xia & Wang, Xianjia, 2023. "Conditional switching between social excluders and loners promotes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    12. Laura Schmid & Farbod Ekbatani & Christian Hilbe & Krishnendu Chatterjee, 2023. "Quantitative assessment can stabilize indirect reciprocity under imperfect information," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Bogliacino, Francesco & Codagnone, Cristiano, 2021. "Microfoundations, behaviour, and evolution: Evidence from experiments," Structural Change and Economic Dynamics, Elsevier, vol. 56(C), pages 372-385.
    14. Quan, Ji & Tang, Caixia & Wang, Xianjia, 2021. "Reputation-based discount effect in imitation on the evolution of cooperation in spatial public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    15. Chen, Ya-Shan & Yang, Han-Xin & Guo, Wen-Zhong & Liu, Geng-Geng, 2018. "Promotion of cooperation based on swarm intelligence in spatial public goods games," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 614-620.
    16. Tatsuya Sasaki & Satoshi Uchida & Isamu Okada & Hitoshi Yamamoto, 2024. "The Evolution of Cooperation and Diversity under Integrated Indirect Reciprocity," Games, MDPI, vol. 15(2), pages 1-16, April.
    17. Chang, Shuhua & Zhang, Zhipeng & Wu, Yu’e & Xie, Yunya, 2018. "Cooperation is enhanced by inhomogeneous inertia in spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 419-425.
    18. Giangiacomo Bravo & Lucia Tamburino, 2008. "The Evolution of Trust in Non-Simultaneous Exchange Situations," Rationality and Society, , vol. 20(1), pages 85-113, February.
    19. Szabolcs Számadó & Ferenc Szalai & István Scheuring, 2016. "Deception Undermines the Stability of Cooperation in Games of Indirect Reciprocity," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-17, January.
    20. Geng, Yini & Shen, Chen & Guo, Hao & Chu, Chen & Yu, Dalei & Shi, Lei, 2017. "Historical payoff promotes cooperation in voluntary prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 145-149.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:384:y:2020:i:c:s0096300320303222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.