IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v351y2019icp162-167.html
   My bibliography  Save this article

The effect of multigame on cooperation in spatial network

Author

Listed:
  • Li, Zhibin
  • Jia, Danyang
  • Guo, Hao
  • Geng, Yini
  • Shen, Chen
  • Wang, Zhen
  • Li, Xuelong

Abstract

In real world, cooperation among unrelated agents remains to represent one open challenge in many disciplines. In some cases, subjects can even change their social dilemmas to ensure their own benefit. Inspired by this fact, here we propose a multigame (composed of prisoner's dilemma game and snowdrift game) and its coevolution mechanism in networked populations: if a player succeeds to study the strategy of its opponent, it also learns the game type of its opponent. Based on numerous computation simulations, it is unveiled that compared with the setup of multigame, coevolution mechanism can effectively resolve the problem of collective cooperation. While for this observation, it is attributed to the fact that vast majority of players changed their games to snowdrift game (i.e. lower social dilemma), where cooperation-defection bistable state guarantees cooperation clusters. We hope our finding can inspire more studies for resolving the social dilemmas.

Suggested Citation

  • Li, Zhibin & Jia, Danyang & Guo, Hao & Geng, Yini & Shen, Chen & Wang, Zhen & Li, Xuelong, 2019. "The effect of multigame on cooperation in spatial network," Applied Mathematics and Computation, Elsevier, vol. 351(C), pages 162-167.
  • Handle: RePEc:eee:apmaco:v:351:y:2019:i:c:p:162-167
    DOI: 10.1016/j.amc.2018.12.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318311202
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.12.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Szolnoki & M. Perc & G. Szabó, 2008. "Diversity of reproduction rate supports cooperation in the prisoner's dilemma game on complex networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 61(4), pages 505-509, February.
    2. Cao, Xian-Bin & Du, Wen-Bo & Rong, Zhi-Hai, 2010. "The evolutionary public goods game on scale-free networks with heterogeneous investment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(6), pages 1273-1280.
    3. Li, Chao & Wang, Li & Sun, Shiwen & Xia, Chengyi, 2018. "Identification of influential spreaders based on classified neighbors in real-world complex networks," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 512-523.
    4. Luo-Luo Jiang & Matjaž Perc & Attila Szolnoki, 2013. "If Cooperation Is Likely Punish Mildly: Insights from Economic Experiments Based on the Snowdrift Game," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-7, May.
    5. Zhen Wang & Marko Jusup & Lei Shi & Joung-Hun Lee & Yoh Iwasa & Stefano Boccaletti, 2018. "Exploiting a cognitive bias promotes cooperation in social dilemma experiments," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    6. Jin, Qing & Wang, Zhen & Wang, Zhen & Wang, Yi-Ling, 2012. "Strategy changing penalty promotes cooperation in spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 395-401.
    7. Xuelong Li & Marko Jusup & Zhen Wang & Huijia Li & Lei Shi & Boris Podobnik & H. Eugene Stanley & Shlomo Havlin & Stefano Boccaletti, 2018. "Punishment diminishes the benefits of network reciprocity in social dilemma experiments," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 115(1), pages 30-35, January.
    8. Jonathan E Bone & Brian Wallace & Redouan Bshary & Nichola J Raihani, 2016. "Power Asymmetries and Punishment in a Prisoner’s Dilemma with Variable Cooperative Investment," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-16, May.
    9. Zhang, Haifeng & Yang, Hanxin & Du, Wenbo & Wang, Binghong & Cao, Xianbin, 2010. "Evolutionary public goods games on scale-free networks with unequal payoff allocation mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(5), pages 1099-1104.
    10. F. Fu & L.-H. Liu & L. Wang, 2007. "Evolutionary Prisoner's Dilemma on heterogeneous Newman-Watts small-world network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 56(4), pages 367-372, April.
    11. Ernst Fehr & Urs Fischbacher, 2003. "The nature of human altruism," Nature, Nature, vol. 425(6960), pages 785-791, October.
    12. Deng, Zheng-Hong & Huang, Yi-Jie & Gu, Zhi-Yang & Li-Gao,, 2018. "Multigames with social punishment and the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 164-170.
    13. Zhang, Jun & Wang, Wei-Ye & Du, Wen-Bo & Cao, Xian-Bin, 2011. "Evolution of cooperation among mobile agents with heterogenous view radii," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2251-2257.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guan, Kaixuan & Chen, Yuyou & Zheng, Wanjun & Zeng, Lulu & Ye, Hang, 2022. "Costly signals can facilitate cooperation and punishment in the prisoner’s dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    2. Zhao, Jie & Wang, Yunchuan & Deng, Yong, 2020. "Identifying influential nodes in complex networks from global perspective," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    3. Bin, Liu & Yue, Wu, 2023. "Co-evolution of reputation-based preference selection and resource allocation with multigame on interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    4. Sun, Chengbin & Luo, Chao, 2020. "Co-evolution of influence-based preferential selection and limited resource with multi-games on interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    5. Wang, Qiuling & Du, Chunpeng, 2019. "Impact of expansion of priority range on cooperation in the prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 77-80.
    6. Mao, Yajun & Rong, Zhihai & Wu, Zhi-Xi, 2021. "Effect of collective influence on the evolution of cooperation in evolutionary prisoner’s dilemma games," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    7. Wu, Yu’e & Zhang, Zhipeng & Wang, Xinyu & Yan, Ming & Zhang, Qingfeng & Zhang, Shuhua, 2021. "Evolution of cooperation in the multigame on a two-layer square network," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    8. Zhou, Bo & Song, Qiankun & Zhao, Zhenjiang & Liu, Tangzhi, 2020. "A reinforcement learning scheme for the equilibrium of the in-vehicle route choice problem based on congestion game," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    9. Li, Jiaqi & Zhang, Jianlei & Chen, Zengqiang & Liu, Qun, 2023. "Aspiration drives adaptive switching between two different payoff matrices," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    10. Chu, Chen & Cui, Simin & Yuan, Zheng & Yu, Chunbin, 2022. "A win-stay-lose-learn mechanism based on aspiration can promote cooperation in a multigame," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    11. Deng, Xinyang & Jiang, Wen & Wang, Zhen, 2020. "An Information Source Selection Model Based on Evolutionary Game Theory," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    12. Geng, Yini & Liu, Yifan & Lu, Yikang & Shen, Chen & Shi, Lei, 2022. "Reinforcement learning explains various conditional cooperation," Applied Mathematics and Computation, Elsevier, vol. 427(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yi Jie & Deng, Zheng Hong & Song, Qun & Wu, Tao & Deng, Zhi Long & Gao, Ming yu, 2019. "The evolution of cooperation in multi-games with aspiration-driven updating rule," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 313-317.
    2. Liu, Yujie & Li, Zemin & Jin, Xing & Tao, Yuchen & Ding, Hong & Wang, Zhen, 2022. "The effect of perceptions competition and learning costs on cooperation in spatial evolutionary multigames," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Yu, Fengyuan & Wang, Jianwei & He, Jialu, 2022. "Inequal dependence on members stabilizes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    4. Wang, Qiuling & Ren, Xiaobin & Gao, Bo & Wang, Jiaqian, 2020. "Heterogeneity reproductive ability promotes cooperation in spatial prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    5. Han, Ying & Song, Zhao & Sun, Jialong & Ma, Jiezhong & Guo, Yangming & Zhu, Peican, 2020. "Investing the effect of age and cooperation in spatial multigame," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    6. Quan, Ji & Tang, Caixia & Zhou, Yawen & Wang, Xianjia & Yang, Jian-Bo, 2020. "Reputation evaluation with tolerance and reputation-dependent imitation on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    7. Wang, Qiuling & Jia, Danyang, 2019. "Expectation driven by update willingness promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 174-179.
    8. Ping Zhu & Guiyi Wei, 2014. "Stochastic Heterogeneous Interaction Promotes Cooperation in Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    9. Liu, Chen & Guo, Hao & Li, Zhibin & Gao, Xiaoyuan & Li, Shudong, 2019. "Coevolution of multi-game resolves social dilemma in network population," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 402-407.
    10. Quan, Ji & Tang, Caixia & Wang, Xianjia, 2021. "Reputation-based discount effect in imitation on the evolution of cooperation in spatial public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    11. Kurokawa, Shun, 2019. "How memory cost, switching cost, and payoff non-linearity affect the evolution of persistence," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 174-192.
    12. Quan, Ji & Yu, Junyu & Li, Xia & Wang, Xianjia, 2023. "Conditional switching between social excluders and loners promotes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    13. Hu, Kaipeng & Guo, Hao & Geng, Yini & Shi, Lei, 2019. "The effect of conformity on the evolution of cooperation in multigame," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 267-272.
    14. Zhang, Lan & Xie, Yuan & Huang, Changwei & Li, Haihong & Dai, Qionglin, 2020. "Heterogeneous investments induced by historical payoffs promote cooperation in spatial public goods games," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    15. Kabir, K.M. Ariful & Kuga, Kazuki & Tanimoto, Jun, 2019. "Effect of information spreading to suppress the disease contagion on the epidemic vaccination game," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 180-187.
    16. Fan, Ruguo & Zhang, Yingqing & Luo, Ming & Zhang, Hongjuan, 2017. "Promotion of cooperation induced by heterogeneity of both investment and payoff allocation in spatial public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 454-463.
    17. Deng, Zheng-Hong & Wang, Zi-Ren & Wang, Huan-Bo & Xu, Lin, 2021. "The evolution of cooperation in multi-games with popularity-driven fitness calculation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    18. Lv, Ran & Qian, Jia-Li & Hao, Qing-Yi & Wu, Chao-Yun & Guo, Ning & Ling, Xiang, 2023. "The impact of current and historical reputation with non-uniform change on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    19. Wang, Hanchen & Sun, Yichun & Zheng, Lei & Du, Wenbo & Li, Yumeng, 2018. "The public goods game on scale-free networks with heterogeneous investment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 396-404.
    20. Wang, Qiuling & Meng, Haoran & Gao, Bo, 2019. "Spontaneous punishment promotes cooperation in public good game," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 183-187.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:351:y:2019:i:c:p:162-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.