IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v305y2017icp299-307.html
   My bibliography  Save this article

Moment stability via resolvent operators of fractional stochastic differential inclusions driven by fractional Brownian motion

Author

Listed:
  • Tamilalagan, P.
  • Balasubramaniam, P.

Abstract

In this manuscript, we consider a class of fractional stochastic differential inclusions driven by fractional Brownian motion in Hilbert space with Hurst parameter H^∈(12,1). Sufficient conditions for the existence and asymptotic stability of mild solutions are derived in mean square moment by employing fractional calculus, analytic resolvent operators and Bohnenblust–Karlin’s fixed point theorem. The effectiveness of the obtained theoretical results is illustrated by an example.

Suggested Citation

  • Tamilalagan, P. & Balasubramaniam, P., 2017. "Moment stability via resolvent operators of fractional stochastic differential inclusions driven by fractional Brownian motion," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 299-307.
  • Handle: RePEc:eee:apmaco:v:305:y:2017:i:c:p:299-307
    DOI: 10.1016/j.amc.2017.02.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317301170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.02.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boufoussi, Brahim & Hajji, Salah, 2012. "Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space," Statistics & Probability Letters, Elsevier, vol. 82(8), pages 1549-1558.
    2. Ge, Fudong & Kou, Chunhai, 2015. "Stability analysis by Krasnoselskii’s fixed point theorem for nonlinear fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 308-316.
    3. Couillard, Michel & Davison, Matt, 2005. "A comment on measuring the Hurst exponent of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 404-418.
    4. Balasubramaniam, P. & Tamilalagan, P., 2015. "Approximate controllability of a class of fractional neutral stochastic integro-differential inclusions with infinite delay by using Mainardi’s function," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 232-246.
    5. Lei Zhang & Yongsheng Ding & Kuangrong Hao & Liangjian Hu & Tong Wang, 2014. "Moment stability of fractional stochastic evolution equations with Poisson jumps," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(7), pages 1539-1547, July.
    6. Sakthivel, R. & Luo, J., 2009. "Asymptotic stability of nonlinear impulsive stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1219-1223, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irshad Ahmad & Saeed Ahmad & Ghaus ur Rahman & Shabir Ahmad & Manuel De la Sen, 2022. "Controllability and Observability Results of an Implicit Type Fractional Order Delay Dynamical System," Mathematics, MDPI, vol. 10(23), pages 1-24, November.
    2. Hamdy M. Ahmed & Mahmoud M. El-Borai & Hassan M. El-Owaidy & Ahmed S. Ghanem, 2019. "Existence Solution and Controllability of Sobolev Type Delay Nonlinear Fractional Integro-Differential System," Mathematics, MDPI, vol. 7(1), pages 1-14, January.
    3. Ahmed, Hamdy M. & Zhu, Quanxin, 2023. "Exploration nonlocal controllability for Hilfer fractional differential inclusions with Clarke subdifferential and nonlinear noise," Statistics & Probability Letters, Elsevier, vol. 195(C).
    4. Dhayal, Rajesh & Malik, Muslim, 2021. "Approximate controllability of fractional stochastic differential equations driven by Rosenblatt process with non-instantaneous impulses," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    5. Vijayakumar, V. & Udhayakumar, R., 2020. "Results on approximate controllability for non-densely defined Hilfer fractional differential system with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun, 2017. "Long Memory and Data Frequency in Financial Markets," CESifo Working Paper Series 6396, CESifo.
    2. Shalini, Velappan & Prasanna, Krishna, 2016. "Impact of the financial crisis on Indian commodity markets: Structural breaks and volatility dynamics," Energy Economics, Elsevier, vol. 53(C), pages 40-57.
    3. Liu, Jian & Cheng, Cheng & Yang, Xianglin & Yan, Lizhao & Lai, Yongzeng, 2019. "Analysis of the efficiency of Hong Kong REITs market based on Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    4. Nguyen Tien, Dung, 2013. "The existence of a positive solution for a generalized delay logistic equation with multifractional noise," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1240-1246.
    5. Ma, Pengcheng & Li, Daye & Li, Shuo, 2016. "Efficiency and cross-correlation in equity market during global financial crisis: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 163-176.
    6. Chaker Aloui & Duc Khuong Nguyen, 2014. "On the detection of extreme movements and persistent behaviour in Mediterranean stock markets: a wavelet-based approach," Applied Economics, Taylor & Francis Journals, vol. 46(22), pages 2611-2622, August.
    7. A. Gómez-Águila & J. E. Trinidad-Segovia & M. A. Sánchez-Granero, 2022. "Improvement in Hurst exponent estimation and its application to financial markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    8. Schadner, Wolfgang, 2022. "U.S. Politics from a multifractal perspective," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    9. Lu, Liang & Liu, Zhenhai & Bin, Maojun, 2016. "Approximate controllability for stochastic evolution inclusions of Clarke’s subdifferential type," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 201-212.
    10. Ladislav Krištoufek, 2010. "Dlouhá paměť a její vývoj ve výnosech burzovního indexu PX v letech 1997-2009 [Long-Term Memory and Its Evolution in Returns of Stock Index PX Between 1997 and 2009]," Politická ekonomie, Prague University of Economics and Business, vol. 2010(4), pages 471-487.
    11. Marin-Lopez, A. & Martínez-Cadena, J.A. & Martinez-Martinez, F. & Alvarez-Ramirez, J., 2023. "Surrogate multivariate Hurst exponent analysis of gait dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    12. Kristoufek, Ladislav, 2014. "Leverage effect in energy futures," Energy Economics, Elsevier, vol. 45(C), pages 1-9.
    13. Kao, Yonggui & Zhu, Quanxin & Qi, Wenhai, 2015. "Exponential stability and instability of impulsive stochastic functional differential equations with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 795-804.
    14. Alessandro Stringhi & Silvia Figini, 2016. "How to improve accuracy for DFA technique," Papers 1602.00629, arXiv.org.
    15. Jiang, Zhi-Qiang & Xie, Wen-Jie & Zhou, Wei-Xing, 2014. "Testing the weak-form efficiency of the WTI crude oil futures market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 235-244.
    16. Kristoufek, Ladislav, 2012. "How are rescaled range analyses affected by different memory and distributional properties? A Monte Carlo study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4252-4260.
    17. Kristoufek, Ladislav, 2019. "Are the crude oil markets really becoming more efficient over time? Some new evidence," Energy Economics, Elsevier, vol. 82(C), pages 253-263.
    18. Bassler, Kevin E. & McCauley, Joseph L. & Gunaratne, Gemunu H., 2006. "Nonstationary increments, scaling distributions, and variable diffusion processes in financial markets," MPRA Paper 2126, University Library of Munich, Germany.
    19. Zhang, Shuo & Liu, Lu & Xue, Dingyu, 2020. "Nyquist-based stability analysis of non-commensurate fractional-order delay systems," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    20. Sathiyaraj, T. & Fečkan, Michal & Wang, JinRong, 2020. "Null controllability results for stochastic delay systems with delayed perturbation of matrices," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:305:y:2017:i:c:p:299-307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.