IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Grain yield and water use efficiency of two types of winter wheat cultivars under different water regimes

Listed author(s):
  • Dong, Baodi
  • Shi, Lei
  • Shi, Changhai
  • Qiao, Yunzhou
  • Liu, Mengyu
  • Zhang, Zhengbin
Registered author(s):

    To improve grain yields of winter wheat and water-use efficiency in the water-shortage region of the North China Plain (NCP), field experiments involving three irrigation levels and two types of winter-wheat cultivars (Shijiazhuang 8 and Xifeng 20, with moderate and strongly drought tolerance, respectively) were conducted over three growing seasons with different levels of precipitation. The results showed that irrigation significantly improved the grain yield of both wheat cultivars. The response of grain yield was largest in the dry year, followed by the normal and wet years. Shijiazhuang 8 responded more strongly than Xifeng 20. Compared to aboveground biomass under no irrigation treatment, the aboveground biomass of Shijiazhuang 8 and Xifeng 20 improved by 87.0% and 57.8%, respectively, in a dry year, by 27.2% and 18.3%, respectively, in a normal year, and by 13.7% and 11.7%, respectively, in a humid year when irrigation were applied twice. The total water use (TWU) of the two cultivars also increased upon irrigation. The increase was more pronounced in the dry year than in the normal or humid years. However, there were no significant differences in the TWUs of the two cultivars. The water-use efficiency at grain-yield level (WUEy) of Shijiazhuang 8 increased significantly upon irrigation in the dry year, did not change in the normal year, and showed a clear decline in the humid year, while the WUEy of Xifeng 20 was reduced by irrigation in each of the three growing seasons. The harvest index (HI) was not altered by irrigation but it did vary by growing season. The HI of Shijiazhuang 8 was always higher than that of Xifeng 20. A positive correlation was found between both the WUEy and the water-use efficiency at the aboveground-biomass level (WUEbm) and the HI. This suggests that the changes in WUEy as a result of irrigation are mainly due to changes in the WUEbm and that the differences in WUEy between the two cultivars were due to differences in WUEbm and HI. These results suggest the following. (1) The TWUs in the two cultivars were roughly equal, although their levels of drought tolerance differed. (2) A wheat cultivar with moderate drought tolerance is expected to be more suitable for the semi-arid region of the NCP. The variety with strongly drought tolerance was able to keep its biomass high and to maintain grain yield under serious drought stress. (3) In order to both increase grain yield and WUEy, two irrigations in a dry year, one irrigation in a normal year, and no irrigation in a humid year will give optimal results in the studied region.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Agricultural Water Management.

    Volume (Year): 99 (2011)
    Issue (Month): 1 ()
    Pages: 103-110

    in new window

    Handle: RePEc:eee:agiwat:v:99:y:2011:i:1:p:103-110
    DOI: 10.1016/j.agwat.2011.07.013
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Yang, Yonghui & Watanabe, Masataka & Zhang, Xiying & Zhang, Jiqun & Wang, Qinxue & Hayashi, Seiji, 2006. "Optimizing irrigation management for wheat to reduce groundwater depletion in the piedmont region of the Taihang Mountains in the North China Plain," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 25-44, April.
    2. Sun, Hongyong & Shen, Yanjun & Yu, Qiang & Flerchinger, Gerald N. & Zhang, Yongqiang & Liu, Changming & Zhang, Xiying, 2010. "Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1139-1145, August.
    3. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    4. Richards, Richard A., 2006. "Physiological traits used in the breeding of new cultivars for water-scarce environments," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 197-211, February.
    5. Li, Jiamin & Inanaga, Shinobu & Li, Zhaohu & Eneji, A. Egrinya, 2005. "Optimizing irrigation scheduling for winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 76(1), pages 8-23, July.
    6. Khan, Shahbaz & Hanjra, Munir A. & Mu, Jianxin, 2009. "Water management and crop production for food security in China: A review," Agricultural Water Management, Elsevier, vol. 96(3), pages 349-360, March.
    7. Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:99:y:2011:i:1:p:103-110. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.