IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i1p132-140.html
   My bibliography  Save this article

Seed yield and water use efficiency of canola (Brassica napus L.) as affected by high temperature stress and supplemental irrigation

Author

Listed:
  • Faraji, Abolfazl
  • Latifi, Nasser
  • Soltani, Afshin
  • Rad, Amir Hossain Shirani

Abstract

The effects of high temperature stress and supplemental irrigation on seed yield and water use efficiency (WUE) of canola (Brassica napus L.) were studied in a field experiment conducted for 2 years. The experiment was a randomized complete block design arranged in split plot, conducted at Agricultural Research Station of Gonbad, Iran. It was arranged in two conditions, i.e. supplemental irrigation and rainfed. Two cultivars of canola (Hyola401 and RGS003) as subplots were grown at five sowing dates as main plots. The sowing dates were 9 November, 6 December, 5 January, 4 February and 6 March in 2005-2006 and 6 November, 6 December, 5 January, 4 February and 6 March in 2006-2007, to have a wide range of environmental conditions around flowering and seed filling periods, and to coincide reproductive stages of the crop with high temperature stress. Seed yield was improved due to field management practices, such as supplemental irrigation and optimum sowing date. Supplemental irrigation was an efficient practice to mitigate water stress, and to increase aboveground dry matter and seed yield. There was a strongly negative relationship between seed yield and air temperature during reproductive stages. Delay in sowing led to more rapid developmental of canola, decreased aboveground dry matter, leaf area index (LAI), harvest index (HI), WUE, and seed yield. Achieving a high aboveground dry matter was an essential prerequisite for high reproductive growth and a high seed yield. Greater seed yield and WUE at first sowing date were associated with greater LAI and aboveground dry matter, and lower temperatures during reproductive stages. The results support the view that WUE can be used as an indirect selection criterion for seed yield in genotypic selection.

Suggested Citation

  • Faraji, Abolfazl & Latifi, Nasser & Soltani, Afshin & Rad, Amir Hossain Shirani, 2009. "Seed yield and water use efficiency of canola (Brassica napus L.) as affected by high temperature stress and supplemental irrigation," Agricultural Water Management, Elsevier, vol. 96(1), pages 132-140, January.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:1:p:132-140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00179-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oweis, Theib & Hachum, Ahmed & Pala, Mustafa, 2004. "Lentil production under supplemental irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 68(3), pages 251-265, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amiri, Seyedreza & Eyni-Nargeseh, Hamed & Rahimi-Moghaddam, Sajjad & Azizi, Khosro, 2021. "Water use efficiency of chickpea agro-ecosystems will be boosted by positive effects of CO2 and using suitable genotype × environment × management under climate change conditions," Agricultural Water Management, Elsevier, vol. 252(C).
    2. Kamkar, B. & Daneshmand, A.R. & Ghooshchi, F. & Shiranirad, A.H. & Safahani Langeroudi, A.R., 2011. "The effects of irrigation regimes and nitrogen rates on some agronomic traits of canola under a semiarid environment," Agricultural Water Management, Elsevier, vol. 98(6), pages 1005-1012, April.
    3. Ahmad Zeeshan Bhatti & Aitazaz Ahsan Farooque & Nicholas Krouglicof & Qing Li & Wayne Peters & Farhat Abbas & Bishnu Acharya, 2021. "An Overview of Climate Change Induced Hydrological Variations in Canada for Irrigation Strategies," Sustainability, MDPI, vol. 13(9), pages 1-15, April.
    4. George, Nicholas & Thompson, Sally E. & Hollingsworth, Joy & Orloff, Steven & Kaffka, Stephen, 2018. "Measurement and simulation of water-use by canola and camelina under cool-season conditions in California," Agricultural Water Management, Elsevier, vol. 196(C), pages 15-23.
    5. Mohtashami, Raham & Movahhedi Dehnavi, Mohsen & Balouchi, Hamidreza & Faraji, Hooshang, 2020. "Improving yield, oil content and water productivity of dryland canola by supplementary irrigation and selenium spraying," Agricultural Water Management, Elsevier, vol. 232(C).
    6. Dariusz Antoni Groth & Mateusz Sokólski & Krzysztof Józef Jankowski, 2020. "A Multi-Criteria Evaluation of the Effectiveness of Nitrogen and Sulfur Fertilization in Different Cultivars of Winter Rapeseed—Productivity, Economic and Energy Balance," Energies, MDPI, vol. 13(18), pages 1-38, September.
    7. Mahmood, A. & Oweis, T. & Ashraf, M. & Majid, A. & Aftab, M. & Aadal, N.K. & Ahmad, I., 2015. "Performance of improved practices in farmers’ fields under rainfed and supplemental irrigation systems in a semi-arid area of Pakistan," Agricultural Water Management, Elsevier, vol. 155(C), pages 1-10.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nandi, R. & Mondal, K. & Singh, K.C. & Saha, M. & Bandyopadhyay, P.K. & Ghosh, P.K., 2021. "Yield-water relationships of lentil grown under different rice establishments in Lower Gangetic Plain of India," Agricultural Water Management, Elsevier, vol. 246(C).
    2. Karrou, M. & Oweis, T., 2012. "Water and land productivities of wheat and food legumes with deficit supplemental irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 107(C), pages 94-103.
    3. Oweis, Theib & Hachum, Ahmed, 2006. "Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 57-73, February.
    4. Mukherjee, Subham & Nandi, Ramprosad & Kundu, Arnab & Bandyopadhyay, Prasanta Kumar & Nalia, Arpita & Ghatak, Priyanka & Nath, Rajib, 2022. "Soil water stress and physiological responses of chickpea (Cicer arietinum L.) subject to tillage and irrigation management in lower Gangetic plain," Agricultural Water Management, Elsevier, vol. 263(C).
    5. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    6. Vicente Montejano-Ramírez & Eduardo Valencia-Cantero, 2024. "The Importance of Lentils: An Overview," Agriculture, MDPI, vol. 14(1), pages 1-15, January.
    7. Oweis, T. & Hachum, A., 2009. "Supplemental irrigation for improved rainfed agriculture in WANA region," IWMI Books, Reports H041999, International Water Management Institute.
    8. Zongo, Beteo & Diarra, Abdoulaye & Barbier, Bruno & Zorom, Malicki & Yacouba, Hamma & Dogot, Thomas, 2015. "Farmers’ Practices And Willingness To Adopt Supplemental Irrigation In Burkina Faso," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 3(1), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:1:p:132-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.