IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v95y2008i11p1253-1260.html
   My bibliography  Save this article

Drip irrigation of tea (Camellia sinensis L.): 1. Yield and crop water productivity responses to irrigation

Author

Listed:
  • Kigalu, Julius M.
  • Kimambo, Ernest I.
  • Msite, Isaac
  • Gembe, Miraj

Abstract

The effects of drip irrigation on the yield and crop water productivity responses of four tea (Camellia sinensis (L.) O. Kuntze) clones were studied four consecutive years (2003/2004-2006/2007), in a large (9 ha) field experiment comprising of six drip irrigation treatments (labelled: I1-I6) and four clones (TRFCA PC81, AHP S15/10, BBK35 and BBT207) planted at a spacing of 1.20 m x 0.60 m at Kibena Tea Limited (KTL), Njombe in the Southern Tanzania in a situation of limited water availability. Each clone x drip irrigation treatment combination was replicated six times in a completely randomized design with 144 net plots each with an area of 72 m2. Clone TRFCA PC81 gave the highest yields (range: 5920-6850 kg dried tea ha-1) followed by clones BBT207 (5010-5940 kg dried tea ha-1), AHP S15/10 (4230-5450 kg dried tea ha-1) and BBK35 (3410-4390 kg dried tea ha-1) and drip irrigation treatment I2 gave the highest yields, ranging from 4954 to 6072 kg dried tea ha-1) compared with those from other treatments (4113-5868 kg dried tea ha-1). Most of these yields exceeded those (4200 kg dried tea ha-1) obtained from overhead sprinkler irrigation system in Mufindi also Southern Tanzania, and Kibena Estate itself. Results showed that drip irrigation of tea not only increased yields but also gave water saving benefits of up to 50% from application of 50% less water to remove the cumulative soil water deficit (treatment I2), and with labour saving of 85% for irrigation. The yield of dried tea per mm depth of water applied, i.e., "the crop water productivity" for drip irrigation of clones TRFCA PC81, BBT207 and BBK35, in 2003/2004 for instance, were 9.3, 8.5 and 7.1 kg dried tea [ha mm]-1, respectively. The corresponding values in 2004/2005 were 2.7, 4.5 and 2.0 kg dried tea [ha mm]-1 while the yield responses from clone AHP S15/10 were linear decreasing by 1 and 1.6 kg dried tea [ha mm]-1 in 2003/2004 and 2004/2005, respectively. In 2005/2006 the crop water productivity from clones TRFCA PC81, AHP S15/10, BBK35 and BBT207 were 4.5, 0.4, 5.2 and 6.9 kg dried tea [ha mm]-1, respectively with quadratic yield response functions to drip irrigation depth of water application. The results are presented and recommendations and implications made for technology-transfer scaling-up for increased use by large and smallholder tea growers.

Suggested Citation

  • Kigalu, Julius M. & Kimambo, Ernest I. & Msite, Isaac & Gembe, Miraj, 2008. "Drip irrigation of tea (Camellia sinensis L.): 1. Yield and crop water productivity responses to irrigation," Agricultural Water Management, Elsevier, vol. 95(11), pages 1253-1260, November.
  • Handle: RePEc:eee:agiwat:v:95:y:2008:i:11:p:1253-1260
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00115-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kigalu, Julius M., 2007. "Effects of planting density on the productivity and water use of tea (Camellia sinensis L.) clones: I. Measurement of water use in young tea using sap flow meters with a stem heat balance method," Agricultural Water Management, Elsevier, vol. 90(3), pages 224-232, June.
    2. Bekele, Samson & Tilahun, Ketema, 2007. "Regulated deficit irrigation scheduling of onion in a semiarid region of Ethiopia," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 148-152, April.
    3. Upadhyay, Bhawana & Samad, Madar & Giordano, Mark, 2005. "Livelihoods and gender roles in drip-irrigation technology: A case of Nepal," IWMI Working Papers H037306, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong-zong Lu & Peng-fei Liu & Aliasghar Montazar & Kyaw-Tha Paw U & Yong-guang Hu, 2019. "Soil Water Infiltration Model for Sprinkler Irrigation Control Strategy: A Case for Tea Plantation in Yangtze River Region," Agriculture, MDPI, vol. 9(10), pages 1-11, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Dianyu & Wang, Youke & Liu, Shouyang & Wei, Xinguang & Wang, Xing, 2014. "Response of relative sap flow to meteorological factors under different soil moisture conditions in rainfed jujube (Ziziphus jujuba Mill.) plantations in semiarid Northwest China," Agricultural Water Management, Elsevier, vol. 136(C), pages 23-33.
    2. Wakeyo, Mekonnen B. & Gardebroek, Cornelis, 2013. "Does water harvesting induce fertilizer use among smallholders? Evidence from Ethiopia," Agricultural Systems, Elsevier, vol. 114(C), pages 54-63.
    3. Cai, Fu & Zhang, Yushu & Mi, Na & Ming, Huiqing & Zhang, Shujie & Zhang, Hui & Zhao, Xianli, 2020. "Maize (Zea mays L.) physiological responses to drought and rewatering, and the associations with water stress degree," Agricultural Water Management, Elsevier, vol. 241(C).
    4. Assefa, Shibeshi & Biazin, Birhanu & Muluneh, Alemayehu & Yimer, Fantaw & Haileslassie, Amare, 2016. "Rainwater harvesting for supplemental irrigation of onions in the southern dry lands of Ethiopia," Agricultural Water Management, Elsevier, vol. 178(C), pages 325-334.
    5. Igbadun, Henry E. & Ramalan, A.A. & Oiganji, Ezekiel, 2012. "Effects of regulated deficit irrigation and mulch on yield, water use and crop water productivity of onion in Samaru, Nigeria," Agricultural Water Management, Elsevier, vol. 109(C), pages 162-169.
    6. Domínguez, A. & Tarjuelo, J.M. & de Juan, J.A. & López-Mata, E. & Breidy, J. & Karam, F., 2011. "Deficit irrigation under water stress and salinity conditions: The MOPECO-Salt Model," Agricultural Water Management, Elsevier, vol. 98(9), pages 1451-1461, July.
    7. Daneshnia, F. & Amini, A. & Chaichi, M.R., 2015. "Surfactant effect on forage yield and water use efficiency for berseem clover and basil in intercropping and limited irrigation treatments," Agricultural Water Management, Elsevier, vol. 160(C), pages 57-63.
    8. Buddhi Raj Ghimire & Koji Kotani, 2015. "A counterfactual experiment on the effectiveness of plastic ponds for smallholder farmers: A case of Nepalese vegetable farming," Working Papers SDES-2015-18, Kochi University of Technology, School of Economics and Management, revised May 2015.
    9. Martínez-Romero, A. & Martínez-Navarro, A. & Pardo, J.J. & Montoya, F. & Domínguez, A., 2017. "Real farm management depending on the available volume of irrigation water (part II): Analysis of crop parameters and harvest quality," Agricultural Water Management, Elsevier, vol. 192(C), pages 58-70.
    10. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    11. Belay, S. A. & Schmitter, Petra & Worqlul, A. W. & Steenhuis, T. S. & Reyes, M. R. & Tilahun, S. A., 2019. "Conservation agriculture saves irrigation water in the dry monsoon phase in the Ethiopian highlands," Papers published in Journals (Open Access), International Water Management Institute, pages 11(10):1-16.
    12. Abd El-Mageed, Taia A. & Semida, Wael M. & Abd El-Wahed, Mohamed H., 2016. "Effect of mulching on plant water status, soil salinity and yield of squash under summer-fall deficit irrigation in salt affected soil," Agricultural Water Management, Elsevier, vol. 173(C), pages 1-12.
    13. Hou, Lizhu & Wenninger, Jochen & Shen, Jiangen & Zhou, Yangxiao & Bao, Han & Liu, Haijun, 2014. "Assessing crop coefficients for Zea mays in the semi-arid Hailiutu River catchment, northwest China," Agricultural Water Management, Elsevier, vol. 140(C), pages 37-47.
    14. Uchechukwu Eze, Engr. Oliver & Emmanuel, Ugwuegbu Ikechukwu & Oyebode, M.A., 2023. "Effect Of Various Irrigation Levels And Fertilizer Materials On Water Use And Yield Of Onion Under Check Basin Irrigation," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 9(2), March.
    15. Wakchaure, G.C. & Minhas, P.S. & Meena, Kamlesh K. & Singh, Narendra P. & Hegade, Priti M. & Sorty, Ajay M., 2018. "Growth, bulb yield, water productivity and quality of onion (Allium cepa L.) as affected by deficit irrigation regimes and exogenous application of plant bio–regulators," Agricultural Water Management, Elsevier, vol. 199(C), pages 1-10.
    16. Kifle, Mulubrehan & Gebretsadikan, T.G., 2016. "Yield and water use efficiency of furrow irrigated potato under regulated deficit irrigation, Atsibi-Wemberta, North Ethiopia," Agricultural Water Management, Elsevier, vol. 170(C), pages 133-139.
    17. Yohannes, Degol Fissahaye & Ritsema, C.J. & Solomon, H. & Froebrich, J. & van Dam, J.C., 2017. "Irrigation water management: Farmers’ practices, perceptions and adaptations at Gumselassa irrigation scheme, North Ethiopia," Agricultural Water Management, Elsevier, vol. 191(C), pages 16-28.
    18. Garg, N.K. & Dadhich, Sushmita M., 2014. "A proposed method to determine yield response factors of different crops under deficit irrigation using inverse formulation approach," Agricultural Water Management, Elsevier, vol. 137(C), pages 68-74.
    19. Sisay A. Belay & Tewodros T. Assefa & P. V. Vara Prasad & Petra Schmitter & Abeyou W. Worqlul & Tammo S. Steenhuis & Manuel R. Reyes & Seifu A. Tilahun, 2020. "The Response of Water and Nutrient Dynamics and of Crop Yield to Conservation Agriculture in the Ethiopian Highlands," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    20. Sarkar, S. & Goswami, S.B. & Mallick, S. & Nanda, M.K., 2008. "Different indices to characterize water use pattern of micro-sprinkler irrigated onion (Allium cepa L.)," Agricultural Water Management, Elsevier, vol. 95(5), pages 625-632, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:95:y:2008:i:11:p:1253-1260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.