IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v71y2005i3p225-242.html
   My bibliography  Save this article

Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment

Author

Listed:
  • Harmanto
  • Salokhe, V.M.
  • Babel, M.S.
  • Tantau, H.J.

Abstract

No abstract is available for this item.

Suggested Citation

  • Harmanto & Salokhe, V.M. & Babel, M.S. & Tantau, H.J., 2005. "Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment," Agricultural Water Management, Elsevier, vol. 71(3), pages 225-242, February.
  • Handle: RePEc:eee:agiwat:v:71:y:2005:i:3:p:225-242
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(04)00221-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roonjho, Shaheen Javed & Kamal, Rowshon Md & Roonjho, Abdul Rehman, 2022. "Modeling capillary wick irrigation system for greenhouse crop production," Agricultural Water Management, Elsevier, vol. 274(C).
    2. Gong, Xuewen & Qiu, Rangjian & Zhang, Baozhong & Wang, Shunsheng & Ge, Jiankun & Gao, Shikai & Yang, Zaiqiang, 2021. "Energy budget for tomato plants grown in a greenhouse in northern China," Agricultural Water Management, Elsevier, vol. 255(C).
    3. Shaikh Abdullah Al MAMUN HOSSAIN & Lixue WANG & Taotao CHEN & Zhenhua LI, 2017. "Leaf area index assessment for tomato and cucumber growing period under different water treatments," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 63(10), pages 461-467.
    4. Yan, Haofang & Acquah, Samuel Joe & Zhang, Chuan & Wang, Guoqing & Huang, Song & Zhang, Hengnian & Zhao, Baoshan & Wu, Haimei, 2019. "Energy partitioning of greenhouse cucumber based on the application of Penman-Monteith and Bulk Transfer models," Agricultural Water Management, Elsevier, vol. 217(C), pages 201-211.
    5. Jeet Chand & Guna Hewa & Ali Hassanli & Baden Myers, 2020. "Evaluation of Deficit Irrigation and Water Quality on Production and Water Productivity of Tomato in Greenhouse," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    6. Kuşçu, Hayrettin & Turhan, Ahmet & Demir, Ali Osman, 2014. "The response of processing tomato to deficit irrigation at various phenological stages in a sub-humid environment," Agricultural Water Management, Elsevier, vol. 133(C), pages 92-103.
    7. Raeisi, Leila Goli & Morid, Saeed & Delavar, Majid & Srinivasan, Raghavan, 2019. "Effect and side-effect assessment of different agricultural water saving measures in an integrated framework," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    8. Yang, Lijuan & Zhao, Fengyan & Chang, Qing & Li, Tianlai & Li, Fusheng, 2015. "Effects of vermicomposts on tomato yield and quality and soil fertility in greenhouse under different soil water regimes," Agricultural Water Management, Elsevier, vol. 160(C), pages 98-105.
    9. Ngouajio, Mathieu & Wang, Guangyao & Goldy, Ronald, 2007. "Withholding of drip irrigation between transplanting and flowering increases the yield of field-grown tomato under plastic mulch," Agricultural Water Management, Elsevier, vol. 87(3), pages 285-291, February.
    10. Fullana-Pericàs, Mateu & Conesa, Miquel À. & Gago, Jorge & Ribas-Carbó, Miquel & Galmés, Jeroni, 2022. "High-throughput phenotyping of a large tomato collection under water deficit: Combining UAVs’ remote sensing with conventional leaf-level physiologic and agronomic measurements," Agricultural Water Management, Elsevier, vol. 260(C).
    11. Mashaly, Ahmed F. & Alazba, A.A. & Al-Awaadh, A.M. & Mattar, Mohamed A., 2015. "Area determination of solar desalination system for irrigating crops in greenhouses using different quality feed water," Agricultural Water Management, Elsevier, vol. 154(C), pages 1-10.
    12. Mohammad Nabil Elnesr & Abdurrahman Ali Alazba & Assem Ibrahim Zein El-Abedein & Mahmoud Maher El-Adl, 2015. "Evaluating the Effect of Three Water Management Techniques on Tomato Crop," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-17, June.
    13. Indranil Samui & Milan Skalicky & Sukamal Sarkar & Koushik Brahmachari & Sayan Sau & Krishnendu Ray & Akbar Hossain & Argha Ghosh & Manoj Kumar Nanda & Richard W. Bell & Mohammed Mainuddin & Marian Br, 2020. "Yield Response, Nutritional Quality and Water Productivity of Tomato ( Solanum lycopersicum L.) are Influenced by Drip Irrigation and Straw Mulch in the Coastal Saline Ecosystem of Ganges Delta, India," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    14. Yan, Haofang & Deng, Shuaishuai & Zhang, Chuan & Wang, Guoqing & Zhao, Shuang & Li, Mi & Liang, Shaowei & Jiang, Jianhui & Zhou, Yudong, 2023. "Determination of energy partition of a cucumber grown Venlo-type greenhouse in southeast China," Agricultural Water Management, Elsevier, vol. 276(C).
    15. Lin, Dong & Zhang, Lijun & Xia, Xiaohua, 2021. "Model predictive control of a Venlo-type greenhouse system considering electrical energy, water and carbon dioxide consumption," Applied Energy, Elsevier, vol. 298(C).
    16. Shih-Lun Fang & Ting-Jung Chang & Yuan-Kai Tu & Han-Wei Chen & Min-Hwi Yao & Bo-Jein Kuo, 2022. "Plant-Response-Based Control Strategy for Irrigation and Environmental Controls for Greenhouse Tomato Seedling Cultivation," Agriculture, MDPI, vol. 12(5), pages 1-17, April.
    17. Tahiri, Adel Zeggaf & Anyoji, H. & Yasuda, H., 2006. "Fixed and variable light extinction coefficients for estimating plant transpiration and soil evaporation under irrigated maize," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 186-192, July.
    18. Nangare, D.D. & Singh, Yogeshwar & Kumar, P. Suresh & Minhas, P.S., 2016. "Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis," Agricultural Water Management, Elsevier, vol. 171(C), pages 73-79.
    19. Rahil, M.H. & Qanadillo, A., 2015. "Effects of different irrigation regimes on yield and water use efficiency of cucumber crop," Agricultural Water Management, Elsevier, vol. 148(C), pages 10-15.
    20. Phogat, V. & Mallants, Dirk & Cox, J.W. & Šimůnek, J. & Oliver, D.P. & Awad, J., 2020. "Management of soil salinity associated with irrigation of protected crops," Agricultural Water Management, Elsevier, vol. 227(C).
    21. Yang, Hui & Du, Taisheng & Qiu, Rangjian & Chen, Jinliang & Wang, Feng & Li, Yang & Wang, Chenxia & Gao, Lihong & Kang, Shaozhong, 2017. "Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 193-204.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:71:y:2005:i:3:p:225-242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.