IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v312y2025ics0378377425001477.html
   My bibliography  Save this article

Quantification of phosphorus-uptake effect on table grape (Vitis vinifera L.) cvs. Early Sweet and Crimson physiology, growth, and productivity using a lysimeter system

Author

Listed:
  • Mdemba, Patrick
  • Tel-Zur, Noemi
  • Tanga, Gastone
  • Yermiyahu, Uri
  • Reshef, Noam
  • Lichter, Amnon
  • Ron, Yonatan
  • Dag, Arnon

Abstract

Evaluation of phosphorus (P) level is vital for vineyard management; however, our current understanding of how P supply affects table grapes, particularly growth, productivity, and quality parameters, is limited. We investigated the influence of various P-application levels on two table grape cultivars: the early-bearing white 'Early Sweet' and the late-bearing red 'Crimson'. During two consecutive seasons, grapevines were grown in 500-L lysimeters with perlite as the growth medium and subjected to three P-fertigation treatments (1, 5 and 15 mg L−1 P). High P-utilization efficiency (>90 %) was achieved for 1 and 5 mg L−1 P. Levels of P application were reflected in the P levels of diagnostic leaves, with blade analysis providing more consistent results than petiole analysis. Increased P supply reduced sugar accumulation in developing fruit. Primary cluster number was reduced with increased P supply for 'Crimson' vines in 2022. Low P caused a reduction in SPAD in leaves toward the end of the summer, indicating the importance of P for chlorophyll stability. In addition, low levels of P led to reduced vegetative growth, as reflected in evapotranspiration and leaf area index in 'Early Sweet' and in the dry pruning weight of both cultivars. Precise P management in 'Early Sweet' and 'Crimson' may increase growth, yield, and fruit quality, and will enable better P-utilization efficiency, thereby reducing costs and environmental contamination.

Suggested Citation

  • Mdemba, Patrick & Tel-Zur, Noemi & Tanga, Gastone & Yermiyahu, Uri & Reshef, Noam & Lichter, Amnon & Ron, Yonatan & Dag, Arnon, 2025. "Quantification of phosphorus-uptake effect on table grape (Vitis vinifera L.) cvs. Early Sweet and Crimson physiology, growth, and productivity using a lysimeter system," Agricultural Water Management, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:agiwat:v:312:y:2025:i:c:s0378377425001477
    DOI: 10.1016/j.agwat.2025.109433
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425001477
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109433?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. ChaoQing Yu & Xiao Huang & Han Chen & H. Charles J. Godfray & Jonathon S. Wright & Jim W. Hall & Peng Gong & ShaoQiang Ni & ShengChao Qiao & GuoRui Huang & YuChen Xiao & Jie Zhang & Zhao Feng & XiaoTa, 2019. "Managing nitrogen to restore water quality in China," Nature, Nature, vol. 567(7749), pages 516-520, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heng Liu & Caizhu Huang & Heng Lian & Xia Cui, 2023. "Hierarchical Spatially Varying Coefficient Process Regression for Modeling Net Anthropogenic Nitrogen Inputs (NANI) from the Watershed of the Yangtze River, China," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    2. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    3. Shi, Xinrui & Batchelor, William D. & Liang, Hao & Li, Sien & Li, Baoguo & Hu, Kelin, 2020. "Determining optimal water and nitrogen management under different initial soil mineral nitrogen levels in northwest China based on a model approach," Agricultural Water Management, Elsevier, vol. 234(C).
    4. Jianqin Ma & Yongqing Wang & Lei Liu & Bifeng Cui & Yu Ding & Lansong Liu, 2025. "Research on Summer Maize Irrigation and Fertilization Strategy in Henan Province Based on Multi-Objective Optimization Model," Sustainability, MDPI, vol. 17(5), pages 1-13, February.
    5. Xiang Luo & Yungui Li & Qingsong Wu & Zifei Wei & Qingqing Li & Liang Wei & Yi Shen & Rong Wang, 2019. "Characteristics of Internal Ammonium Loading from Long-Term Polluted Sediments by Rural Domestic Wastewater," IJERPH, MDPI, vol. 16(23), pages 1-15, November.
    6. Fan, Xing & Peng, Jinshan & Han, Yuqing & Chang, Jie & Ge, Ying & Song, Dan, 2025. "Water-energy-food nexus in the sustainable management of crop-livestock coupled systems," Applied Energy, Elsevier, vol. 378(PA).
    7. Li Wang & Siyuan Liu & Wendi Xuan & Shaopeng Li & Anlei Wei, 2022. "Efficient Nitrate Adsorption from Groundwater by Biochar-Supported Al-Substituted Goethite," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    8. Qiong Zhou & Qian Tan & Huixiang Zeng & Yu-En Lin & Peng Zhu, 2023. "Does Soil Pollution Prevention and Control Promote Corporate Sustainable Development? A Quasi-Natural Experiment of “10-Point Soil Plan” in China," Sustainability, MDPI, vol. 15(5), pages 1-20, March.
    9. Liu, Xiaoxuan & Yu, Le & Cai, Wenjia & Ding, Qun & Hu, Weixun & Peng, Dailiang & Li, Wei & Zhou, Zheng & Huang, Xiaomeng & Yu, Chaoqing & Gong, Peng, 2021. "The land footprint of the global food trade: Perspectives from a case study of soybeans," Land Use Policy, Elsevier, vol. 111(C).
    10. Bocheng Zhang & Zechuan Dai & Yanxu Chen & Mingyu Cheng & Huaikun Zhang & Pingyi Feng & Buqi Ke & Yangyang Zhang & Genqiang Zhang, 2024. "Defect-induced triple synergistic modulation in copper for superior electrochemical ammonia production across broad nitrate concentrations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Zhen Yang & Weijun Gao & Jiawei Li, 2022. "Can Economic Growth and Environmental Protection Achieve a “Win–Win” Situation? Empirical Evidence from China," IJERPH, MDPI, vol. 19(16), pages 1-21, August.
    12. Mingqing Liu & Yuncheng Wu & Sijie Huang & Yuwen Yang & Yan Li & Lei Wang & Yunguan Xi & Jibing Zhang & Qiuhui Chen, 2022. "Effects of Organic Fertilization Rates on Surface Water Nitrogen and Phosphorus Concentrations in Paddy Fields," Agriculture, MDPI, vol. 12(9), pages 1-12, September.
    13. Wenqin Jiang & Jian Zhang & Qiulin Yang & Ping Yang, 2024. "The Effect of Electricity Generation on the Performance of Microbial Fuel Cells for Anammox," Sustainability, MDPI, vol. 16(7), pages 1-19, March.
    14. Xie, Zheyu & Zhang, Yujing & Zhang, Zhenyu & Huang, Jinliang, 2023. "Nitrate removal mechanism in riparian groundwater in an intensified agricultural catchment," Agricultural Water Management, Elsevier, vol. 280(C).
    15. Homayounfar, Mehran & Muneepeerakul, Rachata & Martinez, Christopher J., 2023. "Navigating farming-BMP-policy interplay through a dynamical model," Ecological Economics, Elsevier, vol. 205(C).
    16. Huiming Xie & Xiaopeng Wang & Manhong Shen & Chu Wei, 2022. "Abatement costs of combatting industrial water pollution: convergence across Chinese provinces," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 10752-10767, September.
    17. Mengru Wang & Benjamin Leon Bodirsky & Rhodé Rijneveld & Felicitas Beier & Mirjam P. Bak & Masooma Batool & Bram Droppers & Alexander Popp & Michelle T. H. Vliet & Maryna Strokal, 2024. "A triple increase in global river basins with water scarcity due to future pollution," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Wang, Zhong-Jun & Yue, Fu-Jun & Wang, Yu-Chun & Qin, Cai-Qing & Ding, Hu & Xue, Li-Li & Li, Si-Liang, 2022. "The effect of heavy rainfall events on nitrogen patterns in agricultural surface and underground streams and the implications for karst water quality protection," Agricultural Water Management, Elsevier, vol. 266(C).
    19. Mengru Wang & Annette B. G. Janssen & Jeanne Bazin & Maryna Strokal & Lin Ma & Carolien Kroeze, 2022. "Accounting for interactions between Sustainable Development Goals is essential for water pollution control in China," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Wangzheng Shen & Liang Zhang & Emily A. Ury & Sisi Li & Biqing Xia & Nandita B. Basu, 2025. "Restoring small water bodies to improve lake and river water quality in China," Nature Communications, Nature, vol. 16(1), pages 1-10, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:312:y:2025:i:c:s0378377425001477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.