IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v312y2025ics0378377425001064.html
   My bibliography  Save this article

Optimizing subsurface pipe layout by considering leaching efficiency of major salt ions to improve crop coverage using HYDRUS-2D

Author

Listed:
  • Liu, Yi
  • Tan, Wang
  • Zeng, Wenzhi
  • Ao, Chang
  • Jiang, Donglin

Abstract

Soil salinization significantly threatens sustainable agriculture in arid and semi-arid regions, where improper subsurface drainage layouts often fail to remove harmful ions that inhibit crop growth. Field investigation and laboratory experiments reveal that subsurface pipe drainage (SPD) reduces the content of major ions and enhances crop coverage significantly, with low coverage areas decreasing by 27.4 % and high coverage areas increasing by 13.5 % after SPD installation. Ion-specific leaching efficiencies were found to vary, with sodium (Na⁺) and chloride (Cl⁻) removal exceeding 65 %, while magnesium (Mg²⁺) and bicarbonate (HCO₃⁻) played key roles in improving crop coverage. However, excessive leaching of Mg²⁺ in high coverage areas reduced its positive effects. The HYDRUS-2D model, calibrated and validated with experimental data, achieved high accuracy in simulating cumulative drainage and ion discharge (R² > 0.7 for all ions), with an average root mean square error (RMSE) for major ions below 0.2 g kg−1. Scenario analysis evaluated 96 configurations of SPD depth, spacing, and leaching quotas. Results indicate that burial depths of 1.4–1.8 m, drainage spacings of 20–30 m, and leaching quotas of 400–500 mm are optimal for balancing salt removal and crop coverage improvement. Configurations targeting major ions, such as Mg²⁺ and HCO₃⁻, outperformed traditional designs based on total salt reduction, with coverage improvement exceeding 16 % in low-coverage areas. These findings provide actionable strategies for precision salt management and sustainable agriculture in salinized regions.

Suggested Citation

  • Liu, Yi & Tan, Wang & Zeng, Wenzhi & Ao, Chang & Jiang, Donglin, 2025. "Optimizing subsurface pipe layout by considering leaching efficiency of major salt ions to improve crop coverage using HYDRUS-2D," Agricultural Water Management, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:agiwat:v:312:y:2025:i:c:s0378377425001064
    DOI: 10.1016/j.agwat.2025.109392
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425001064
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109392?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hirekhan, Meenakshi & Gupta, S.K. & Mishra, K.L., 2007. "Application of WaSim to assess performance of a subsurface drainage system under semi-arid monsoon climate," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 224-234, March.
    2. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    3. Genxiang Feng & Zhanyu Zhang & Zemin Zhang, 2019. "Evaluating the Sustainable Use of Saline Water Irrigation on Soil Water-Salt Content and Grain Yield under Subsurface Drainage Condition," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    4. Hornbuckle, J.W. & Christen, E.W. & Faulkner, R.D., 2007. "Evaluating a multi-level subsurface drainage system for improved drainage water quality," Agricultural Water Management, Elsevier, vol. 89(3), pages 208-216, May.
    5. Feng, Zhao-Zhong & Wang, Xiao-Ke & Feng, Zong-Wei, 2005. "Soil N and salinity leaching after the autumn irrigation and its impact on groundwater in Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 71(2), pages 131-143, February.
    6. Addab, Haider & Bailey, Ryan T., 2022. "Simulating the effect of subsurface tile drainage on watershed salinity using SWAT," Agricultural Water Management, Elsevier, vol. 262(C).
    7. Singh, R. & Helmers, M.J. & Qi, Zhiming, 2006. "Calibration and validation of DRAINMOD to design subsurface drainage systems for Iowa's tile landscapes," Agricultural Water Management, Elsevier, vol. 85(3), pages 221-232, October.
    8. Ramos, Tiago B. & Darouich, Hanaa & Šimůnek, Jiří & Gonçalves, Maria C. & Martins, José C., 2019. "Soil salinization in very high-density olive orchards grown in southern Portugal: Current risks and possible trends," Agricultural Water Management, Elsevier, vol. 217(C), pages 265-281.
    9. Li Zhao & Tong Heng & Lili Yang & Xuan Xu & Yue Feng, 2021. "Study on the Farmland Improvement Effect of Drainage Measures under Film Mulch with Drip Irrigation in Saline–Alkali Land in Arid Areas," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    10. Qian, Yingzhi & Zhu, Yan & Ye, Ming & Huang, Jiesheng & Wu, Jingwei, 2021. "Experiment and numerical simulation for designing layout parameters of subsurface drainage pipes in arid agricultural areas," Agricultural Water Management, Elsevier, vol. 243(C).
    11. Yuhui Yang & Dongwei Li & Weixiong Huang & Xinguo Zhou & Zhaoyang Li & Xiaomei Dong & Xingpeng Wang, 2022. "Effects of Subsurface Drainage on Soil Salinity and Groundwater Table in Drip Irrigated Cotton Fields in Oasis Regions of Tarim Basin," Agriculture, MDPI, vol. 12(12), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jiawei & Huang, Quanzhong & Hou, Zelin & Zhu, Xiaojiang & Xue, Fuping & Huang, Guanhua, 2025. "Effects of subsurface drainage and year-round irrigation on crop water-salt stress and yield in an arid region," Agricultural Water Management, Elsevier, vol. 312(C).
    2. Li, Yunfeng & Yu, Qihua & Ning, Huifeng & Gao, Yang & Sun, Jingsheng, 2023. "Simulation of soil water, heat, and salt adsorptive transport under film mulched drip irrigation in an arid saline-alkali area using HYDRUS-2D," Agricultural Water Management, Elsevier, vol. 290(C).
    3. Danni Han & Chao Chen & Fan Wang & Wenping Li & Hao Peng & Qiu Jin & Bo Bi & Hiba Shaghaleh & Yousef Alhaj Hamoud, 2023. "Effects of Subsurface Pipe Drainage Spacing on Soil Salinity Movement in Jiangsu Coastal Reclamation Area," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    4. Yao, Chenzhi & Guo, Chenyao & Wu, Jingwei & Qiang, Wei & Qin, Shuai & Yang, Haoyu & Li, Hang, 2024. "Evaluation of combined open ditch and subsurface drainage: Experimental data and optimization of specifications in arid Northwest China," Agricultural Water Management, Elsevier, vol. 306(C).
    5. Liu, Yi & Hu, Yue & Wei, Chenchen & Zeng, Wenzhi & Huang, Jiesheng & Ao, Chang, 2024. "Synergistic regulation of irrigation and drainage based on crop salt tolerance and leaching threshold," Agricultural Water Management, Elsevier, vol. 292(C).
    6. Guo, Shuhao & Li, Xianyue & Šimůnek, Jirí & Wang, Jun & Zhang, Yuehong & Wang, Ya'nan & Zhen, Zhixin & He, Rui, 2024. "Experimental and numerical evaluation of soil water and salt dynamics in a corn field with shallow saline groundwater and crop-season drip and autumn post-harvest irrigations," Agricultural Water Management, Elsevier, vol. 305(C).
    7. Qian, Yingzhi & Zhu, Yan & Ye, Ming & Huang, Jiesheng & Wu, Jingwei, 2021. "Experiment and numerical simulation for designing layout parameters of subsurface drainage pipes in arid agricultural areas," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    9. Guo, Chenyao & Yao, Chenzhi & Wu, Jingwei & Qin, Shuai & Yang, Haoyu & Li, Hang & Mao, Jun, 2024. "Field and numerical experiments of subsurface drainage systems in saline and low-permeability interlayered fields in arid regions," Agricultural Water Management, Elsevier, vol. 300(C).
    10. Qian, Yingzhi & Han, Xudong & Zhu, Yan & Yang, Wei & Huang, Jiesheng, 2025. "A modified model for simulating subsurface drainage with synthetic envelope considering impacts of entrance resistance and its application," Agricultural Water Management, Elsevier, vol. 310(C).
    11. Addab, Haider & Bailey, Ryan T., 2022. "Simulating the effect of subsurface tile drainage on watershed salinity using SWAT," Agricultural Water Management, Elsevier, vol. 262(C).
    12. Ren, Xiaolei & Wang, Shaoli & Yang, Peiling & Tao, Yuan, 2023. "Experimental and modeling evaluation of siphon-type subsurface drainage performance in flooding and waterlogging removal," Agricultural Water Management, Elsevier, vol. 275(C).
    13. Salazar, Osvaldo & Wesström, Ingrid & Youssef, Mohamed A. & Skaggs, R. Wayne & Joel, Abraham, 2009. "Evaluation of the DRAINMOD-N II model for predicting nitrogen losses in a loamy sand under cultivation in south-east Sweden," Agricultural Water Management, Elsevier, vol. 96(2), pages 267-281, February.
    14. Catarina Esgalhado & Maria Helena Guimaraes, 2020. "Unveiling Contrasting Preferred Trajectories of Local Development in Southeast Portugal," Land, MDPI, vol. 9(3), pages 1-15, March.
    15. Wang, Yayu & Xiao, Yang & Puig-Bargués, Jaume & Zhou, Bo & Liu, Zeyuan & Muhammad, Tahir & Liang, Hongbang & Maitusong, Memetmin & Wang, Zhenhua & Li, Yunkai, 2023. "Assessment of water quality ions in brackish water on drip irrigation system performance applied in saline areas," Agricultural Water Management, Elsevier, vol. 289(C).
    16. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    17. Negm, L.M. & Youssef, M.A. & Skaggs, R.W. & Chescheir, G.M. & Jones, J., 2014. "DRAINMOD–DSSAT model for simulating hydrology, soil carbon and nitrogen dynamics, and crop growth for drained crop land," Agricultural Water Management, Elsevier, vol. 137(C), pages 30-45.
    18. Matinzadeh, Mohammad Mehdi & Abedi Koupai, Jahangir & Sadeghi-Lari, Adnan & Nozari, Hamed & Shayannejad, Mohammad, 2017. "Development of an innovative integrated model for the simulation of nitrogen dynamics in farmlands with drainage systems using the system dynamics approach," Ecological Modelling, Elsevier, vol. 347(C), pages 11-28.
    19. Feng Tian & Haibin Shi & Qingfeng Miao & Ruiping Li & Jie Duan & Xu Dou & Weiying Feng, 2023. "Soil Water and Salt Transport in Severe Saline–Alkali Soil after Ditching under Subsurface Pipe Drainage Conditions," Agriculture, MDPI, vol. 13(12), pages 1-20, November.
    20. Feng, Genxiang & Zhu, Chengli & Wu, Qingfeng & Wang, Ce & Zhang, Zhanyu & Mwiya, Richwell Mubita & Zhang, Li, 2021. "Evaluating the impacts of saline water irrigation on soil water-salt and summer maize yield in subsurface drainage condition using coupled HYDRUS and EPIC model," Agricultural Water Management, Elsevier, vol. 258(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:312:y:2025:i:c:s0378377425001064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.