IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v310y2025ics0378377425000897.html
   My bibliography  Save this article

Quantifying the influence of 3,4-dimethylpyrazole phosphate on soil nitrous oxide production in multi-year reclaimed water-irrigated soil

Author

Listed:
  • Chi, Yanbing
  • Wei, Chenchen
  • Yang, Peiling
  • Yang, Le
  • Fan, Linlin
  • Shi, Miaomiao

Abstract

3,4-Dimethyl pyrazole phosphate (DMPP) is commonly used to regulate soil nitrogen transformation and mitigate nitrous oxide (N₂O) emissions, while reclaimed water (RW) irrigation alleviates freshwater shortages but may alter soil properties, affecting N₂O emissions. However, the interaction between DMPP and RW irrigation on N₂O emission pathways remains underexplored. This study conducted a field experiment with two water quality regimes (RW and groundwater (GW)) and two nitrogen fertilizer conditions (with and without DMPP) to assess soil N₂O, nitric oxide (NO), and ammonia (NH₃) emissions. Using the ¹ ⁵N tracing technique, we investigated microbial mechanisms underlying N₂O and NO production under multi-year RW irrigation. The findings indicate that although DMPP effectively reduced soil N₂O and NO concentrations within the 0–30 cm depth, thereby lowering their emissions under RW irrigation, its application also led to an increase in soil NH₃ volatilization. Consequently, cumulative N₂O emissions shifted from 2020 to 2021, with reductions of 15.11 %–38.46 % under RW irrigation and 36.88 %–48.29 % under GW irrigation. However, the inhibitory effect of DMPP was weaker under RW irrigation compared to GW irrigation. This reduction was influenced by RW irrigation, which enhanced the abundance of nitrifying microbial communities and increased the contribution of heterotrophic nitrification to soil N₂O emissions, thereby mitigating the inhibitory effect of DMPP on autotrophic nitrification. Overall, it emphasized the need for optimized nitrogen management strategies under RW irrigation to maximize emission reductions while minimizing trade-offs in NH₃ volatilization and microbial-driven nitrogen transformations.

Suggested Citation

  • Chi, Yanbing & Wei, Chenchen & Yang, Peiling & Yang, Le & Fan, Linlin & Shi, Miaomiao, 2025. "Quantifying the influence of 3,4-dimethylpyrazole phosphate on soil nitrous oxide production in multi-year reclaimed water-irrigated soil," Agricultural Water Management, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:agiwat:v:310:y:2025:i:c:s0378377425000897
    DOI: 10.1016/j.agwat.2025.109375
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425000897
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109375?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Pereira, B.F.F. & He, Z.L. & Stoffella, P.J. & Melfi, A.J., 2011. "Reclaimed wastewater: Effects on citrus nutrition," Agricultural Water Management, Elsevier, vol. 98(12), pages 1828-1833, October.
    2. Chi, Yanbing & Wei, Chenchen & Zheng, Qiang & Yang, Peiling & Ren, Shumei, 2023. "Potential risk of soil reactive gaseous nitrogen emissions under reclaimed water irrigation in a wheat-maize rotation system," Agricultural Water Management, Elsevier, vol. 288(C).
    3. Haizhong Wu & Daichang Wang & Dengxiao Zhang & Wei Rao & Qingsong Yuan & Xiaobo Shen & Guozhen Ma & Xiaolei Jie & Shiliang Liu, 2024. "Responses of N 2 O, CO 2 , and NH 3 Emissions to Biochar and Nitrification Inhibitors Under a Delayed Nitrogen Application Regime," Agriculture, MDPI, vol. 14(11), pages 1-23, November.
    4. Fang, Q. & Ma, L. & Yu, Q. & Ahuja, L.R. & Malone, R.W. & Hoogenboom, G., 2010. "Irrigation strategies to improve the water use efficiency of wheat-maize double cropping systems in North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1165-1174, August.
    5. Zhao, Panpan & Ma, Meng & Hu, Yaqi & Wu, Wenyong & Xiao, Juan, 2022. "Comparison of international standards for irrigation with reclaimed water," Agricultural Water Management, Elsevier, vol. 274(C).
    6. Pedrero, Francisco & Allende, Ana & Gil, María I. & Alarcón, Juan J., 2012. "Soil chemical properties, leaf mineral status and crop production in a lemon tree orchard irrigated with two types of wastewater," Agricultural Water Management, Elsevier, vol. 109(C), pages 54-60.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Yang & Shao, Guangcheng & Wu, Shiqing & Xiaojun, Wang & Lu, Jia & Cui, Jintao, 2021. "Changes in soil salinity under treated wastewater irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    4. Urbano, Vanessa Ribeiro & Mendonça, Thaís Grandizoli & Bastos, Reinaldo Gaspar & Souza, Claudinei Fonseca, 2017. "Effects of treated wastewater irrigation on soil properties and lettuce yield," Agricultural Water Management, Elsevier, vol. 181(C), pages 108-115.
    5. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    6. Badir S. Alsaeed & Dexter V. L. Hunt & Soroosh Sharifi, 2024. "A Sustainable Water Resources Management Assessment Framework (SWRM-AF) for Arid and Semi-Arid Regions—Part 1: Developing the Conceptual Framework," Sustainability, MDPI, vol. 16(7), pages 1-43, March.
    7. Attia, Ahmed & El-Hendawy, Salah & Al-Suhaibani, Nasser & Alotaibi, Majed & Tahir, Muhammad Usman & Kamal, Khaled Y., 2021. "Evaluating deficit irrigation scheduling strategies to improve yield and water productivity of maize in arid environment using simulation," Agricultural Water Management, Elsevier, vol. 249(C).
    8. Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
    9. Singh, Ajay & Krause, Peter & Panda, Sudhindra N. & Flugel, Wolfgang-Albert, 2010. "Rising water table: A threat to sustainable agriculture in an irrigated semi-arid region of Haryana, India," Agricultural Water Management, Elsevier, vol. 97(10), pages 1443-1451, October.
    10. Petousi, I. & Fountoulakis, M.S. & Saru, M.L. & Nikolaidis, N. & Fletcher, L. & Stentiford, E.I. & Manios, T., 2015. "Effects of reclaimed wastewater irrigation on olive (Olea europaea L. cv. ‘Koroneiki’) trees," Agricultural Water Management, Elsevier, vol. 160(C), pages 33-40.
    11. Zhang, Chao & Liu, Jiangui & Shang, Jiali & Dong, Taifeng & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2021. "Improving winter wheat biomass and evapotranspiration simulation by assimilating leaf area index from spectral information into a crop growth model," Agricultural Water Management, Elsevier, vol. 255(C).
    12. Perulli, Giulio Demetrio & Bresilla, Kushtrim & Manfrini, Luigi & Boini, Alexandra & Sorrenti, Giovambattista & Grappadelli, Luca Corelli & Morandi, Brunella, 2019. "Beneficial effect of secondary treated wastewater irrigation on nectarine tree physiology," Agricultural Water Management, Elsevier, vol. 221(C), pages 120-130.
    13. Dokoohaki, Hamze & Gheysari, Mahdi & Mousavi, Sayed-Farhad & Zand-Parsa, Shahrokh & Miguez, Fernando E. & Archontoulis, Sotirios V. & Hoogenboom, Gerrit, 2016. "Coupling and testing a new soil water module in DSSAT CERES-Maize model for maize production under semi-arid condition," Agricultural Water Management, Elsevier, vol. 163(C), pages 90-99.
    14. Tianyi Yang & Haichao Yu & Sien Li & Xiangning Yuan & Xiang Ao & Haochong Chen & Yuexin Wang & Jie Ding, 2024. "Driving Factors and Numerical Simulation of Evapotranspiration of a Typical Cabbage Agroecosystem in the Shiyang River Basin, Northwest China," Agriculture, MDPI, vol. 14(6), pages 1-14, June.
    15. Zhang, Jing & Zhang, Huihui & Sima, Matthew W. & Trout, Thomas J. & Malone, Rob W. & Wang, Li, 2021. "Simulated deficit irrigation and climate change effects on sunflower production in Eastern Colorado with CSM-CROPGRO-Sunflower in RZWQM2," Agricultural Water Management, Elsevier, vol. 246(C).
    16. Liu, S. & Yang, J.Y. & Zhang, X.Y. & Drury, C.F. & Reynolds, W.D. & Hoogenboom, G., 2013. "Modelling crop yield, soil water content and soil temperature for a soybean–maize rotation under conventional and conservation tillage systems in Northeast China," Agricultural Water Management, Elsevier, vol. 123(C), pages 32-44.
    17. Li, Chunxia & Li, Youjun & Fu, Guozhan & Huang, Ming & Ma, Chao & Wang, Hezheng & Zhang, Jun, 2020. "Cultivation and mulching materials strategies to enhance soil water status, net ecosystem and crop water productivity of winter wheat in semi-humid regions," Agricultural Water Management, Elsevier, vol. 239(C).
    18. Zhong, Honglin & Sun, Laixiang & Fischer, Günther & Tian, Zhan & van Velthuizen, Harrij & Liang, Zhuoran, 2017. "Mission Impossible? Maintaining regional grain production level and recovering local groundwater table by cropping system adaptation across the North China Plain," Agricultural Water Management, Elsevier, vol. 193(C), pages 1-12.
    19. Vengai Mbanyele & Florence Mtambanengwe & Hatirarami Nezomba & Jairos Rurinda & Paul Mapfumo, 2022. "Conservation Agriculture in Semi-Arid Zimbabwe: A Promising Practice to Improve Finger Millet ( Eleusine coracana Gaertn.) Productivity and Soil Water Availability in the Short Term," Agriculture, MDPI, vol. 12(5), pages 1-17, April.
    20. Zhang, Xiying & Chen, Suying & Sun, Hongyong & Wang, Yanmei & Shao, Liwei, 2010. "Water use efficiency and associated traits in winter wheat cultivars in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1117-1125, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:310:y:2025:i:c:s0378377425000897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.