IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v307y2025ics0378377424005389.html
   My bibliography  Save this article

Lifecycle environmental benefits of integrated rational fertilization, biochar, and constructed wetland in mitigating nutrient loading

Author

Listed:
  • Chen, Yu-Ning
  • Fan, Chihhao
  • Šereš, Michal
  • Šerešová, Markéta
  • Vymazal, Jan
  • Pan, Shu-Yuan

Abstract

Agricultural activities due to fertilization contribute significantly to nutrient loadings and other environmental burdens, posing a severe threat to ecosystems. Although a portfolio of green agricultural practices is recommended, few studies address the environmental benefits from a life-cycle perspective. This study comprehensively evaluates the cradle-to-gate environmental benefits of integrating rational fertilization, biochar, and constructed wetlands (CWs) exemplified by plum cultivation. Four assessment scenarios were designed: (S1) conventional cultivation, (S2) rational fertilization with biochar amendment, (S3) conventional cultivation with a simulated CWs system, and (S4) rational fertilization with biochar amendment and a simulated CWs system. In the assessment, rational fertilization used half the fertilizer compared to conventional practices, biochar was applied at 0.1 ton/ha, and horizontal subsurface flow CWs were filled with washed gravel and planted with Phragmites australis. The findings show that rational fertilization combined with biochar (S2) or CWs (S3) alone show about half the eutrophication impacts of conventional cultivation (S1). Combining rational fertilization, biochar and CWs (S4) further reduces freshwater and marine eutrophication potentials by ∼73.5 % and ∼69.8 %, respectively. Similarly, these green agricultural practices (either S2 or S4) effectively reduce the overall endpoint impacts by about 47 %, with synergistic improvements, particularly in endpoint freshwater ecotoxicity and freshwater eutrophication, observed for S4 (a significant reduction of 76 %) compared to S1. Regarding the carbon footprint, the production of plums using conventional agriculture emits ∼300 kg CO2-eq per ton-plum, whereas using green agricultural practices results in only ∼138 kg CO2-eq per ton-plum, representing a reduction of 45.8 % in greenhouse gas emissions. This study highlights the potential of green agricultural practices to mitigate NPS nutrient loadings to aquifers and achieve sustainable agricultural management through reduced global warming and other environmental impacts.

Suggested Citation

  • Chen, Yu-Ning & Fan, Chihhao & Šereš, Michal & Šerešová, Markéta & Vymazal, Jan & Pan, Shu-Yuan, 2025. "Lifecycle environmental benefits of integrated rational fertilization, biochar, and constructed wetland in mitigating nutrient loading," Agricultural Water Management, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005389
    DOI: 10.1016/j.agwat.2024.109202
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424005389
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pasquale Borrelli & David A. Robinson & Larissa R. Fleischer & Emanuele Lugato & Cristiano Ballabio & Christine Alewell & Katrin Meusburger & Sirio Modugno & Brigitta Schütt & Vito Ferro & Vincenzo Ba, 2017. "An assessment of the global impact of 21st century land use change on soil erosion," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    2. Sarfraz, Muddassar & Iqbal, Kashif & Wang, Yichu & Bhutta, Muhammad Shoaib & Jaffri, Zain ul Abidin, 2023. "Role of agricultural resource sector in environmental emissions and its explicit relationship with sustainable development: Evidence from agri-food system in China," Resources Policy, Elsevier, vol. 80(C).
    3. M. C. Ockenden & M. J. Hollaway & K. J. Beven & A. L. Collins & R. Evans & P. D. Falloon & K. J. Forber & K. M. Hiscock & R. Kahana & C. J. A. Macleod & W. Tych & M. L. Villamizar & C. Wearing & P. J., 2017. "Major agricultural changes required to mitigate phosphorus losses under climate change," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    4. Panpan Ji & Jianhui Chen & Ruijin Chen & Jianbao Liu & Chaoqing Yu & Fahu Chen, 2024. "Nitrogen and phosphorus trends in lake sediments of China may diverge," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Ya-Zhen & Lee, You-Yi & Fan, Chihhao, 2025. "Innovative fertilization strategies for in-situ pollution control and carbon negativity enhancement in agriculture," Agricultural Water Management, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panos Panagos & Pasquale Borrelli & David Robinson, 2020. "FAO calls for actions to reduce global soil erosion," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 789-790, May.
    2. Wang, Xinzhi & Lin, Qingxia & Wu, Zhiyong & Zhang, Yuliang & Li, Changwen & Liu, Ji & Zhang, Shinan & Li, Songyu, 2025. "Agricultural GDP exposure to drought and its machine learning-based prediction in the Jialing River Basin, China," Agricultural Water Management, Elsevier, vol. 307(C).
    3. Nur Syabeera Begum Nasir Ahmad & Firuza Begham Mustafa & Safiah Yusmah Muhammad Yusoff, 2024. "Spatial prediction of soil erosion risk using knowledge-driven method in Malaysia’s Steepland Agriculture Forested Valley," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(6), pages 15333-15359, June.
    4. Caterina Samela & Vito Imbrenda & Rosa Coluzzi & Letizia Pace & Tiziana Simoniello & Maria Lanfredi, 2022. "Multi-Decadal Assessment of Soil Loss in a Mediterranean Region Characterized by Contrasting Local Climates," Land, MDPI, vol. 11(7), pages 1-25, July.
    5. Nazzareno Diodato & Pasquale Borrelli & Panos Panagos & Gianni Bellocchi, 2022. "Global assessment of storm disaster-prone areas," PLOS ONE, Public Library of Science, vol. 17(8), pages 1-19, August.
    6. Qing Li & Yong Zhou & Li Wang & Qian Zuo & Siqi Yi & Jingyi Liu & Xueping Su & Tao Xu & Yan Jiang, 2021. "The Link between Landscape Characteristics and Soil Losses Rates over a Range of Spatiotemporal Scales: Hubei Province, China," IJERPH, MDPI, vol. 18(21), pages 1-16, October.
    7. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    8. Jiyun Li & Yong Zhou & Qing Li & Siqi Yi & Lina Peng, 2022. "Exploring the Effects of Land Use Changes on the Landscape Pattern and Soil Erosion of Western Hubei Province from 2000 to 2020," IJERPH, MDPI, vol. 19(3), pages 1-27, January.
    9. Wen, Xiaojie & Yao, Shunbo & Sauer, Johannes, 2022. "Shadow prices and abatement cost of soil erosion in Shaanxi Province, China: Convex expectile regression approach," Ecological Economics, Elsevier, vol. 201(C).
    10. Sun, Xueqing & Xiang, Pengcheng & Cong, Kexin, 2023. "Research on early warning and control measures for arable land resource security," Land Use Policy, Elsevier, vol. 128(C).
    11. Yingzhuang Guo & Xiaoyan Wang & Lili Zhou & Charles Melching & Zeqi Li, 2020. "Identification of Critical Source Areas of Nitrogen Load in the Miyun Reservoir Watershed under Different Hydrological Conditions," Sustainability, MDPI, vol. 12(3), pages 1-22, January.
    12. Langhans, Kelley E. & Schmitt, Rafael J.P. & Chaplin-Kramer, Rebecca & Anderson, Christopher B. & Vargas Bolaños, Christian & Vargas Cabezas, Fermin & Dirzo, Rodolfo & Goldstein, Jesse A. & Horangic, , 2022. "Modeling multiple ecosystem services and beneficiaries of riparian reforestation in Costa Rica," Ecosystem Services, Elsevier, vol. 57(C).
    13. Guangjie Liu & Yi Xia & Li Bao, 2025. "The Evolution of Cropland Slope Structure and Its Implications for Fragmentation and Soil Erosion in China," Land, MDPI, vol. 14(5), pages 1-23, May.
    14. Supriyono Supriyono & Utaya Sugeng & Taryana Didik & Handoyo Budi, 2021. "Spatial-Temporal Trend Analysis of Rainfall Erosivity and Erosivity Density of Tropical Area in Air Bengkulu Watershed, Indonesia," Quaestiones Geographicae, Sciendo, vol. 40(3), pages 125-142, September.
    15. Juliet Katusiime & Brigitta Schütt, 2023. "Towards Legislation Responsive to Integrated Watershed Management Approaches and Land Tenure," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    16. Pignalosa, Antonio & Silvestri, Nicola & Pugliese, Francesco & Corniello, Alfonso & Gerundo, Carlo & Del Seppia, Nicola & Lucchesi, Massimo & Coscini, Nicola & De Paola, Francesco & Giugni, Maurizio, 2022. "Long-term simulations of Nature-Based Solutions effects on runoff and soil losses in a flat agricultural area within the catchment of Lake Massaciuccoli (Central Italy)," Agricultural Water Management, Elsevier, vol. 273(C).
    17. Nirmal Kumar & Sudhir Kumar Singh, 2021. "Soil erosion assessment using earth observation data in a trans-boundary river basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 1-34, May.
    18. Khoiriyah, Nikmatul & Forgenie, David & Sookhai, Satesh & Saputro, Arief Joko, 2024. "Demand Elasticities of Animal-Sourced Food: Empirical Study in Yogyakarta, Indonesia," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 12(3), July.
    19. Mariane Paulina Batalha Roque & José Ambrósio Ferreira Neto & André Luiz Lopes Faria, 2022. "Degraded grassland and the conflict of land use in protected areas of hotspot in Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 1475-1492, January.
    20. Wang, Zhaozhi & Zhang, T.Q. & Tan, C.S. & Xue, Lulin & Bukovsky, Melissa & Qi, Z.M., 2021. "Modeling impacts of climate change on crop yield and phosphorus loss in a subsurface drained field of Lake Erie region, Canada," Agricultural Systems, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.