Author
Listed:
- Imtiaz, Fatima
- Farooque, Aitazaz A.
- Randhawa, Gurjit S.
- Wang, Xiuquan
- Esau, Travis J.
- Acharya, Bishnu
- Hashemi Garmdareh, Seyyed Ebrahim
Abstract
Soil moisture estimation is critical for environmental and agricultural sustainability, with its spatial and temporal variation playing a key role in drought monitoring and understanding climate change. The region of Prince Edward Island (PEI), Atlantic Canada's largest potato producer, is facing irregular precipitation patterns that stress crop water supplies. This study aims to estimate field-scale soil moisture utilizing satellite-based reflective and thermal infrared bands from Landsat-8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) and Moderate-resolution Imaging Spectroradiometer (MODIS) over the cloud-based Google Earth Engine (GEE) platform. The GEE data catalog's pre-processed data endured to calculate various indicators for the agricultural seasons of 2021 and 2022 across three designated plots: A, B, and C. The indicators are land surface temperature (LST), normalized difference vegetation index (NDVI), normalized difference water index (NDWI), and normalized difference moisture index (NDMI). NDVI and LST were used to calculate the soil moisture index (SMI), representing the real-time soil moisture at the field scale. The soil moisture data was validated using in situ measurements. The analysis showed good Root Mean Square Error values of 1.43 % (Plot A), 2.12 % (Plot B), and 2.60 % (Plot C). A weak negative association between LST and NDVI was noticed in the study, with R² values of 0.25, 0.38 and 0.26 for Plots A, B and C, respectively. As the LST rises, vegetation declines due to the elevated temperatures in the study area. Second, a significant (p < 0.05) negative correlation (R2 =1) existed between SMI and LST in both the 2021 and 2022 seasons, showing a decrease in the top layer soil moisture with LST. The NDWI exhibited a significant inverse correlation with soil moisture, while NDMI and NDVI are effective predictors. Hence, based on the current study, optical and thermal remote sensing offers valuable insights into soil moisture dynamics and can be a good tool for irrigation control and water conservation.
Suggested Citation
Imtiaz, Fatima & Farooque, Aitazaz A. & Randhawa, Gurjit S. & Wang, Xiuquan & Esau, Travis J. & Acharya, Bishnu & Hashemi Garmdareh, Seyyed Ebrahim, 2024.
"An inclusive approach to crop soil moisture estimation: Leveraging satellite thermal infrared bands and vegetation indices on Google Earth engine,"
Agricultural Water Management, Elsevier, vol. 306(C).
Handle:
RePEc:eee:agiwat:v:306:y:2024:i:c:s0378377424005080
DOI: 10.1016/j.agwat.2024.109172
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:306:y:2024:i:c:s0378377424005080. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.