IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v306y2024ics0378377424005067.html
   My bibliography  Save this article

Biochar enhances soil hydrological function by improving the pore structure of saline soil

Author

Listed:
  • Jia, Angyuan
  • Song, Xiaojun
  • Li, Shengping
  • Liu, Zhipeng
  • Liu, Xiaotong
  • Han, Zixuan
  • Gao, Huizhou
  • Gao, Qiqi
  • Zha, Yan
  • Liu, Ying
  • Wu, Xueping
  • Wang, Gang

Abstract

The poor soil structure caused by salinization is a major factor affecting crop growth and soil structure will further affect hydrological function. Biochar is widely used to improve soil physical structure because of its special porous material. However, the mechanism of soil pore structure on hydrological function (e.g., soil saturated hydraulic conductivity, plant available water, least limiting water range) after biochar incorporation in saline soil remains unclear. Therefore, the present study examined the response of soil structural properties of different biochar addition in saline clay loam, and subsequently assessed how the pore structure influence soil hydrological function. The study involved four treatments: CK (Control)、C1 (7.5 t ha−1 biochar)、C2 (15 t ha−1 biochar)、C3 (30 t ha−1 biochar). Soil aggregate stability increased from 15 % to 30 % when the amount of biochar addition increased from 7.5 t ha−1 to 30 t ha−1. The highest connectivity index (2.36) and the highest fractal dimension (2.56) were found at the biochar addition of 30 t ha−1. Biochar addition reduced the proportion of small pores (<50 µm pore size) at both soil depths of 0–10 cm and 10–20 cm, whereas increased the proportion of large pores (>300 µm pore size). Biochar amendment reduced the soil penetration resistance, with the soil saturated hydraulic conductivity, plant available water and the least limiting water range were measured 46 %, 27 % and 40 % greater in rate of 30 t ha−1 biochar addition as compared with those of the CK, respectively. Pearson’s correlation analysis and redundancy analysis revealed that the soil saturated hydraulic conductivity was positively correlated with large pores (diameter >300 μm) and pore connectivity (p < 0.05). The lowest least limiting water range of the CK was primarily constrained by a relatively higher penetration resistance. The improved pore connectivity and elongated pore structures were the key responsible for the reduced penetration resistance in biochar-amended soil, which subsequently increased the least limiting water range. These quantitative estimates highlight the positive effects of biochar amendment-induced soil pore structure alternations towards improving soil hydrological functionalities. These findings are essential for devising effective strategies to enhance sustainable agriculture in saline soils.

Suggested Citation

  • Jia, Angyuan & Song, Xiaojun & Li, Shengping & Liu, Zhipeng & Liu, Xiaotong & Han, Zixuan & Gao, Huizhou & Gao, Qiqi & Zha, Yan & Liu, Ying & Wu, Xueping & Wang, Gang, 2024. "Biochar enhances soil hydrological function by improving the pore structure of saline soil," Agricultural Water Management, Elsevier, vol. 306(C).
  • Handle: RePEc:eee:agiwat:v:306:y:2024:i:c:s0378377424005067
    DOI: 10.1016/j.agwat.2024.109170
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424005067
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Moura, Maíse Soares & Silva, Bruno Montoani & Mota, Paula Karen & Borghi, Emerson & Resende, Alvaro Vilela de & Acuña-Guzman, Salvador Francisco & Araújo, Gabriela Soares Santos & da Silva, Lucas d, 2021. "Soil management and diverse crop rotation can mitigate early-stage no-till compaction and improve least limiting water range in a Ferralsol," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Zhang, Tao & Wang, Ting & Liu, KS & Wang, Lixue & Wang, Kun & Zhou, Yan, 2015. "Effects of different amendments for the reclamation of coastal saline soil on soil nutrient dynamics and electrical conductivity responses," Agricultural Water Management, Elsevier, vol. 159(C), pages 115-122.
    3. Safadoust, A. & Feizee, P. & Mahboubi, A.A. & Gharabaghi, B. & Mosaddeghi, M.R. & Ahrens, B., 2014. "Least limiting water range as affected by soil texture and cropping system," Agricultural Water Management, Elsevier, vol. 136(C), pages 34-41.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruan, Renjie & Zhang, Zhongbin & Wang, Yuekai & Guo, Zichun & Zhou, Hu & Tu, Renfeng & Hua, Keke & Wang, Daozhong & Peng, Xinhua, 2022. "Long-term straw rather than manure additions improved least limiting water range in a Vertisol," Agricultural Water Management, Elsevier, vol. 261(C).
    2. de Lima, Renato P. & Tormena, Cássio A. & Figueiredo, Getulio C. & da Silva, Anderson R. & Rolim, Mário M., 2020. "Least limiting water and matric potential ranges of agricultural soils with calculated physical restriction thresholds," Agricultural Water Management, Elsevier, vol. 240(C).
    3. de Moura, Maíse Soares & Silva, Bruno Montoani & Mota, Paula Karen & Borghi, Emerson & Resende, Alvaro Vilela de & Acuña-Guzman, Salvador Francisco & Araújo, Gabriela Soares Santos & da Silva, Lucas d, 2021. "Soil management and diverse crop rotation can mitigate early-stage no-till compaction and improve least limiting water range in a Ferralsol," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Ferreira, Camila Jorge Bernabé & Zotarelli, Lincoln & Tormena, Cássio Antonio & Rens, Libby R. & Rowland, Diane L., 2017. "Effects of water table management on least limiting water range and potato root growth," Agricultural Water Management, Elsevier, vol. 186(C), pages 1-11.
    5. Fábio Prataviera & Aline Martineli Batista & Edwin M. M. Ortega & Gauss M. Cordeiro & Bruno Montoani Silva, 2023. "The Logit Exponentiated Power Exponential Regression with Applications," Annals of Data Science, Springer, vol. 10(3), pages 713-735, June.
    6. Jingnan Li & Haiyang Zhang & Li Zheng, 2023. "Influence of Organic Amendments Based on Garden Waste for Microbial Community Growth in Coastal Saline Soil," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    7. Hosseini, F. & Mosaddeghi, M.R. & Hajabbasi, M.A. & Sabzalian, M.R., 2016. "Role of fungal endophyte of tall fescue (Epichloë coenophiala) on water availability, wilting point and integral energy in texturally-different soils," Agricultural Water Management, Elsevier, vol. 163(C), pages 197-211.
    8. Avanthi Deshani Igalavithana & Yong Sik Ok & Nabeel Khan Niazi & Muhammad Rizwan & Mohammad I. Al-Wabel & Adel R. A. Usman & Deok Hyun Moon & Sang Soo Lee, 2017. "Effect of Corn Residue Biochar on the Hydraulic Properties of Sandy Loam Soil," Sustainability, MDPI, vol. 9(2), pages 1-10, February.
    9. Yusuf Alizade Govarchin Ghale & Abdusselam Altunkaynak & Alper Unal, 2018. "Investigation Anthropogenic Impacts and Climate Factors on Drying up of Urmia Lake using Water Budget and Drought Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 325-337, January.
    10. Beniaich, Adnane & Guimarães, Danielle Vieira & Avanzi, Junior Cesar & Silva, Bruno Montoani & Acuña-Guzman, Salvador Francisco & dos Santos, Wharley Pereira & Silva, Marx Leandro Naves, 2023. "Spontaneous vegetation as an alternative to cover crops in olive orchards reduces water erosion and improves soil physical properties under tropical conditions," Agricultural Water Management, Elsevier, vol. 279(C).
    11. Fibrianty Minhal & Azwar Ma'as & Eko Hanudin & Putu Sudira, 2020. "Improvement of the chemical properties and buffering capacity of coastal sandy soil as affected by clays and organic by-product application," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 15(2), pages 93-100.
    12. Jérôme Bernier Brillon & Marc Lucotte & Blandine Giusti & Gilles Tremblay & Matthieu Moingt, 2025. "Cross-Effect Between Cover Crops and Glyphosate-Based Herbicide Application on Microbiote Communities in Field Crops Soils," Agriculture, MDPI, vol. 15(4), pages 1-24, February.
    13. Jingnan Li & Xiangyang Sun & Suyan Li, 2020. "Effects of Garden Waste Compost and Bentonite on Muddy Coastal Saline Soil," Sustainability, MDPI, vol. 12(9), pages 1-13, April.
    14. Binxian Gu & Tianyang Qin & Meihua Qiu & Jie Yu & Li Zhang & Yunlong Li, 2023. "Addition of Exogenous Organic Ameliorants Mediates Soil Bacteriome and Microbial Community Carbon Source Utilization Pattern in Coastal Saline–Alkaline Soil," Agriculture, MDPI, vol. 14(1), pages 1-14, December.
    15. Muhammad Naeem & Waqas Ahmed Minhas & Shahid Hussain & Sami Ul-Allah & Muhammad Farooq & Shahid Farooq & Mubshar Hussain, 2022. "Barley-Based Cropping Systems and Weed Control Strategies Influence Weed Infestation, Soil Properties and Barley Productivity," Agriculture, MDPI, vol. 12(4), pages 1-20, March.
    16. Xiaoguang Li & Kai Guo & Xiaohui Feng & Haiman Liu & Xiaojing Liu, 2017. "Soil Respiration Response to Long-Term Freezing Saline Water Irrigation with Plastic Mulching in Coastal Saline Plain," Sustainability, MDPI, vol. 9(4), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:306:y:2024:i:c:s0378377424005067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.