IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v261y2022ics0378377421006338.html
   My bibliography  Save this article

Long-term straw rather than manure additions improved least limiting water range in a Vertisol

Author

Listed:
  • Ruan, Renjie
  • Zhang, Zhongbin
  • Wang, Yuekai
  • Guo, Zichun
  • Zhou, Hu
  • Tu, Renfeng
  • Hua, Keke
  • Wang, Daozhong
  • Peng, Xinhua

Abstract

Least limiting water range (LLWR) is a range in soil water content not limiting root growth, which integrates the effect of soil water retention, aeration, and penetration resistance. This study aimed to assess the effect of different long-term fertilization treatments on LLWR in the surface layer of a Vertisol. Soil samples were taken from six long-term fertilization treatments including no fertilization (Control), inorganic fertilization (NPK), inorganic fertilization plus low amount of straw (NPKLS), inorganic fertilization plus high amount of straw (NPKHS), inorganic fertilization plus pig manure (NPKPM) and inorganic fertilization plus cow manure (NPKCM) for measuring LLWR. Results showed that in comparison with the Control, the manure treatments (NPKPM and NPKCM) increased soil organic carbon content (SOC) more pronounced than the straw treatments (NPKLS and NPKHS). However, the water stable aggregates (WSA0.25) in the manure treatments was much smaller than the straw treatments. Soil water content at field capacity (θFC) was significantly higher in the manure treatments (NPKPM and NPKCM) than the other treatments. However, soil water content at soil penetration resistance of 3 MPa (θPR) was significantly lower in the straw treatments than in the manure treatments. The LLWR in the manure treatments had sharper decline with bulk density than the other treatments. In comparison with the Control and NPK treatments, the straw treatments significantly increased the LLWR, but manure treatments did not, probably resulting from positive relation between SOC and penetration resistance at a given soil water content and less favorable effect of the manures on soil aggregation than the straw. The S index was significantly increased by the NPKCM treatment relative to the Control, and positively correlated with the SOC. The variation of WSA0.25 instead of SOC could explain the change of LLWR under different fertilization treatments effectively. These observations imply that the LLWR could assess the effect of organic fertilizations on soil physical quality more comprehensively.

Suggested Citation

  • Ruan, Renjie & Zhang, Zhongbin & Wang, Yuekai & Guo, Zichun & Zhou, Hu & Tu, Renfeng & Hua, Keke & Wang, Daozhong & Peng, Xinhua, 2022. "Long-term straw rather than manure additions improved least limiting water range in a Vertisol," Agricultural Water Management, Elsevier, vol. 261(C).
  • Handle: RePEc:eee:agiwat:v:261:y:2022:i:c:s0378377421006338
    DOI: 10.1016/j.agwat.2021.107356
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421006338
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107356?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Moura, Maíse Soares & Silva, Bruno Montoani & Mota, Paula Karen & Borghi, Emerson & Resende, Alvaro Vilela de & Acuña-Guzman, Salvador Francisco & Araújo, Gabriela Soares Santos & da Silva, Lucas d, 2021. "Soil management and diverse crop rotation can mitigate early-stage no-till compaction and improve least limiting water range in a Ferralsol," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Ferreira, Camila Jorge Bernabé & Zotarelli, Lincoln & Tormena, Cássio Antonio & Rens, Libby R. & Rowland, Diane L., 2017. "Effects of water table management on least limiting water range and potato root growth," Agricultural Water Management, Elsevier, vol. 186(C), pages 1-11.
    3. de Lima, Renato P. & Tormena, Cássio A. & Figueiredo, Getulio C. & da Silva, Anderson R. & Rolim, Mário M., 2020. "Least limiting water and matric potential ranges of agricultural soils with calculated physical restriction thresholds," Agricultural Water Management, Elsevier, vol. 240(C).
    4. de Oliveira, Ingrid Nehmi & de Souza, Zigomar Menezes & Lovera, Lenon Henrique & Vieira Farhate, Camila Viana & De Souza Lima, Elizeu & Aguilera Esteban, Diego Alexander & Fracarolli, Juliana Aparecid, 2019. "Least limiting water range as influenced by tillage and cover crop," Agricultural Water Management, Elsevier, vol. 225(C).
    5. Safadoust, A. & Feizee, P. & Mahboubi, A.A. & Gharabaghi, B. & Mosaddeghi, M.R. & Ahrens, B., 2014. "Least limiting water range as affected by soil texture and cropping system," Agricultural Water Management, Elsevier, vol. 136(C), pages 34-41.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Lima, Renato P. & Tormena, Cássio A. & Figueiredo, Getulio C. & da Silva, Anderson R. & Rolim, Mário M., 2020. "Least limiting water and matric potential ranges of agricultural soils with calculated physical restriction thresholds," Agricultural Water Management, Elsevier, vol. 240(C).
    2. de Moura, Maíse Soares & Silva, Bruno Montoani & Mota, Paula Karen & Borghi, Emerson & Resende, Alvaro Vilela de & Acuña-Guzman, Salvador Francisco & Araújo, Gabriela Soares Santos & da Silva, Lucas d, 2021. "Soil management and diverse crop rotation can mitigate early-stage no-till compaction and improve least limiting water range in a Ferralsol," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Beniaich, Adnane & Guimarães, Danielle Vieira & Avanzi, Junior Cesar & Silva, Bruno Montoani & Acuña-Guzman, Salvador Francisco & dos Santos, Wharley Pereira & Silva, Marx Leandro Naves, 2023. "Spontaneous vegetation as an alternative to cover crops in olive orchards reduces water erosion and improves soil physical properties under tropical conditions," Agricultural Water Management, Elsevier, vol. 279(C).
    4. Ferreira, Camila Jorge Bernabé & Zotarelli, Lincoln & Tormena, Cássio Antonio & Rens, Libby R. & Rowland, Diane L., 2017. "Effects of water table management on least limiting water range and potato root growth," Agricultural Water Management, Elsevier, vol. 186(C), pages 1-11.
    5. Fábio Prataviera & Aline Martineli Batista & Edwin M. M. Ortega & Gauss M. Cordeiro & Bruno Montoani Silva, 2023. "The Logit Exponentiated Power Exponential Regression with Applications," Annals of Data Science, Springer, vol. 10(3), pages 713-735, June.
    6. Yu, Qianan & Cui, Yuanlai, 2022. "Improvement and testing of ORYZA model water balance modules for alternate wetting and drying irrigation," Agricultural Water Management, Elsevier, vol. 271(C).
    7. Susanne Klages & Christina Aue & Karin Reiter & Claudia Heidecke & Bernhard Osterburg, 2022. "Catch Crops in Lower Saxony—More Than 30 Years of Action against Water Pollution with Nitrates: All in Vain?," Agriculture, MDPI, vol. 12(4), pages 1-27, March.
    8. Camila Viana Vieira Farhate & Zigomar Menezes de Souza & Maurício Roberto Cherubin & Lenon Herique Lovera & Ingrid Nehmi de Oliveira & Marina Pedroso Carneiro & Newton La Scala Jr., 2020. "Abiotic Soil Health Indicators that Respond to Sustainable Management Practices in Sugarcane Cultivation," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
    9. de Oliveira, Ingrid Nehmi & de Souza, Zigomar Menezes & Lovera, Lenon Henrique & Vieira Farhate, Camila Viana & De Souza Lima, Elizeu & Aguilera Esteban, Diego Alexander & Fracarolli, Juliana Aparecid, 2019. "Least limiting water range as influenced by tillage and cover crop," Agricultural Water Management, Elsevier, vol. 225(C).
    10. Zhang, Fan & Chen, Mengru & Fu, Jintao & Zhang, Xiangzhu & Li, Yuan & Shao, Yating & Xing, Yingying & Wang, Xiukang, 2023. "Coupling effects of irrigation amount and fertilization rate on yield, quality, water and fertilizer use efficiency of different potato varieties in Northwest China," Agricultural Water Management, Elsevier, vol. 287(C).
    11. Hosseini, F. & Mosaddeghi, M.R. & Hajabbasi, M.A. & Sabzalian, M.R., 2016. "Role of fungal endophyte of tall fescue (Epichloë coenophiala) on water availability, wilting point and integral energy in texturally-different soils," Agricultural Water Management, Elsevier, vol. 163(C), pages 197-211.
    12. Rens, Libby R. & Zotarelli, Lincoln & Ribeiro da Silva, Andre Luiz Biscaia & Ferreira, Camila J.B. & Tormena, Cássio A. & Rowland, Diane L. & Morgan, Kelly T., 2022. "Managing water table depth thresholds for potato subirrigation," Agricultural Water Management, Elsevier, vol. 259(C).
    13. Silva, Andre Luiz Biscaia Ribeiro da & Zotarelli, Lincoln & Dukes, Michael D. & van Santen, Edzard & Asseng, Senthold, 2023. "Nitrogen fertilizer rate and timing of application for potato under different irrigation methods," Agricultural Water Management, Elsevier, vol. 283(C).
    14. Avanthi Deshani Igalavithana & Yong Sik Ok & Nabeel Khan Niazi & Muhammad Rizwan & Mohammad I. Al-Wabel & Adel R. A. Usman & Deok Hyun Moon & Sang Soo Lee, 2017. "Effect of Corn Residue Biochar on the Hydraulic Properties of Sandy Loam Soil," Sustainability, MDPI, vol. 9(2), pages 1-10, February.
    15. Muhammad Naeem & Waqas Ahmed Minhas & Shahid Hussain & Sami Ul-Allah & Muhammad Farooq & Shahid Farooq & Mubshar Hussain, 2022. "Barley-Based Cropping Systems and Weed Control Strategies Influence Weed Infestation, Soil Properties and Barley Productivity," Agriculture, MDPI, vol. 12(4), pages 1-20, March.
    16. Yusuf Alizade Govarchin Ghale & Abdusselam Altunkaynak & Alper Unal, 2018. "Investigation Anthropogenic Impacts and Climate Factors on Drying up of Urmia Lake using Water Budget and Drought Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 325-337, January.
    17. Oliveira, Ingrid Nehmi de & de Souza, Zigomar Menezes & Lovera, Lenon Henrique & Farhate, Camila Viana Vieira & Lima, Elizeu de Souza & Esteban, Diego Alexander Aguilera & Totti, Maria Cecilia Vieira, 2020. "Capacitance probe calibration for an Ultisol Udult cultivated with sugarcane by soil tillages," Agricultural Water Management, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:261:y:2022:i:c:s0378377421006338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.