IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2023i1p44-d1307989.html
   My bibliography  Save this article

Addition of Exogenous Organic Ameliorants Mediates Soil Bacteriome and Microbial Community Carbon Source Utilization Pattern in Coastal Saline–Alkaline Soil

Author

Listed:
  • Binxian Gu

    (College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
    State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Tianyang Qin

    (College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Meihua Qiu

    (Department of Agriculture and Rural Affairs of Jiangsu Province, Jiangsu Cultivated Land Quality and Agro-Environment Protection Station, Nanjing 210003, China)

  • Jie Yu

    (Department of Agriculture and Rural Affairs of Jiangsu Province, Jiangsu Cultivated Land Quality and Agro-Environment Protection Station, Nanjing 210003, China)

  • Li Zhang

    (Department of Agriculture and Rural Affairs of Jiangsu Province, Jiangsu Cultivated Land Quality and Agro-Environment Protection Station, Nanjing 210003, China)

  • Yunlong Li

    (College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
    State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
    Key Laboratory of Arable Land Quality Monitoring and Evaluation, Key Laboratory of Saline–Alkaline Soil Improvement and Utilization (Coastal Saline–Alkaline Lands), Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225127, China)

Abstract

Knowledge regarding how abiotic and biotic environmental factors operate in soil microbiome reassembly remains rudimentary in coastal saline–alkaline soils amended by different organic ameliorants. In this study, field trials were conducted to investigate the impacts and underlying mechanisms of sewage sludge (S) and sludge-based vermicompost (V) at the application amounts of 0, 50, and 100 t ha −1 on soil physicochemical characteristics, carbon source utilization pattern, and bacteriome in coastal saline–alkaline soils. Results revealed that impacts of the organic ameliorants on soil’s physicochemical and microbial attributes were highly dependent upon the carbon types and amounts applied. Unsurprisingly, applying sewage sludge and vermicompost significantly alleviated environmental constraints, such as saline–alkaline stress and nutrient deficiency, with lower pH, salinity, and higher soil organic carbon content observed in organics-amended soils. Specifically, higher microbial substrate metabolic activity, but lower diversity was observed in saline–alkaline soils amended by organic ameliorants. In addition, reassembled bacteriomes harboring distinguishable core and unique community profiles were observed in reclaimed soils as compared to unamended saline–alkaline soil. Procrustes analysis showed that the soil microbial utilization pattern of carbon sources was significantly related to the alterations in their physicochemical property and bacterial core microbiome. Additionally, Redundancy Analysis (RDA) revealed that soil core bacteriome reassembly was dominated by the integrated impacts of soil salinity, successively followed by carbohydrates, amino acids, polymers, pH, soil organic carbon (SOC), and available nitrogen (AN). Overall, this study provides a comprehensive understanding of soil abiotic and biotic determinants in bacteriome assembly in coastal saline–alkaline soil remediation mediated by organic ameliorants.

Suggested Citation

  • Binxian Gu & Tianyang Qin & Meihua Qiu & Jie Yu & Li Zhang & Yunlong Li, 2023. "Addition of Exogenous Organic Ameliorants Mediates Soil Bacteriome and Microbial Community Carbon Source Utilization Pattern in Coastal Saline–Alkaline Soil," Agriculture, MDPI, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:gam:jagris:v:14:y:2023:i:1:p:44-:d:1307989
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/1/44/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/1/44/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jorenush, M. H. & Sepaskhah, A. R., 2003. "Modelling capillary rise and soil salinity for shallow saline water table under irrigated and non-irrigated conditions," Agricultural Water Management, Elsevier, vol. 61(2), pages 125-141, June.
    2. Zhang, Tao & Wang, Ting & Liu, KS & Wang, Lixue & Wang, Kun & Zhou, Yan, 2015. "Effects of different amendments for the reclamation of coastal saline soil on soil nutrient dynamics and electrical conductivity responses," Agricultural Water Management, Elsevier, vol. 159(C), pages 115-122.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barnard, J.H. & van Rensburg, L.D. & Bennie, A.T.P. & du Preez, C.C., 2013. "Simulating water uptake of irrigated field crops from non-saline water table soils: Validation and application of the model SWAMP," Agricultural Water Management, Elsevier, vol. 126(C), pages 19-32.
    2. Fibrianty Minhal & Azwar Ma'as & Eko Hanudin & Putu Sudira, 2020. "Improvement of the chemical properties and buffering capacity of coastal sandy soil as affected by clays and organic by-product application," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 15(2), pages 93-100.
    3. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    4. Jingnan Li & Haiyang Zhang & Li Zheng, 2023. "Influence of Organic Amendments Based on Garden Waste for Microbial Community Growth in Coastal Saline Soil," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    5. Wang, Lichun & Ning, Songrui & Chen, Xiaoli & Li, Youli & Guo, Wenzhong & Ben-Gal, Alon, 2021. "Modeling tomato root water uptake influenced by soil salinity under drip irrigation with an inverse method," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Jingnan Li & Xiangyang Sun & Suyan Li, 2020. "Effects of Garden Waste Compost and Bentonite on Muddy Coastal Saline Soil," Sustainability, MDPI, vol. 12(9), pages 1-13, April.
    7. Xu, Xu & Huang, Guanhua & Sun, Chen & Pereira, Luis S. & Ramos, Tiago B. & Huang, Quanzhong & Hao, Yuanyuan, 2013. "Assessing the effects of water table depth on water use, soil salinity and wheat yield: Searching for a target depth for irrigated areas in the upper Yellow River basin," Agricultural Water Management, Elsevier, vol. 125(C), pages 46-60.
    8. Chen, Shuai & Mao, Xiaomin & Shang, Songhao, 2022. "Response and contribution of shallow groundwater to soil water/salt budget and crop growth in layered soils," Agricultural Water Management, Elsevier, vol. 266(C).
    9. Han, Ming & Zhao, Chengyi & Šimůnek, Jirka & Feng, Gary, 2015. "Evaluating the impact of groundwater on cotton growth and root zone water balance using Hydrus-1D coupled with a crop growth model," Agricultural Water Management, Elsevier, vol. 160(C), pages 64-75.
    10. Xiaoguang Li & Kai Guo & Xiaohui Feng & Haiman Liu & Xiaojing Liu, 2017. "Soil Respiration Response to Long-Term Freezing Saline Water Irrigation with Plastic Mulching in Coastal Saline Plain," Sustainability, MDPI, vol. 9(4), pages 1-15, April.
    11. Liu, Y. & Pereira, L.S. & Fernando, R.M., 2006. "Fluxes through the bottom boundary of the root zone in silty soils: Parametric approaches to estimate groundwater contribution and percolation," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 27-40, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2023:i:1:p:44-:d:1307989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.