IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v291y2024ics0378377423005243.html
   My bibliography  Save this article

Differentiated responses of plant water use regulation to drought in Robinia pseudoacacia plantations on the Chinese Loess Plateau

Author

Listed:
  • Yan, Xiaoying
  • Zhang, Zhongdian
  • Zhao, Xiaofang
  • Huang, Mingbin
  • Wu, Xiaofei
  • Guo, Tianqi

Abstract

Robinia pseudoacacia plantations play an important role in improving the ecological environment of the Chinese Loess Plateau (CLP). However, drought stress is emerging as the major threat of sustainable growth in R. pseudoacacia plantations under the background of global warming and increasing water scarcity. Investigating the responses of plant water use to drought and the associated regulating mechanism in R. pseudoacacia is helpful for improving understanding of plant survival strategies and developing sustainable forest management practices under climate change. In this study, we monitored the canopy transpiration (Tr) dynamics with synchronous observations of soil water content and leaf water potentials in R. pseudoacacia plantations during two different hydrological years (2021 and 2022) at two sites featuring semihumid (Changwu) and semiarid (Mizhi) climate conditions. Results showed that normalized Tr exhibited stronger relationships with meteorological variables at the Changwu site than Mizhi site, as well as under non-drought condition compared to drought condition. The canopy stomatal conductance (Gc) decreased significantly with increasing vapor pressure deficit (VPD) and soil drought at both sites. The sensitivity of Gc to VPD revealed more strict stomatal regulation of transpiration in response to drought at the Changwu site, and less strict stomatal regulation at the Mizhi site. Relationship between midday and predawn water potentials indicated a partial isohydric strategy in response to drought, and reflected stomatal closure tends to occur more rapidly than hydraulic conductivity loss in R. pseudoacacia. These results suggest that the Tr and Gc values of R. pseudoacacia and their sensitivity to climate weakened as soil drought progresses and varied with different climatic conditions, and R. pseudoacacia exhibited flexible stomatal regulation of transpiration and water use strategies in response to drought.

Suggested Citation

  • Yan, Xiaoying & Zhang, Zhongdian & Zhao, Xiaofang & Huang, Mingbin & Wu, Xiaofei & Guo, Tianqi, 2024. "Differentiated responses of plant water use regulation to drought in Robinia pseudoacacia plantations on the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 291(C).
  • Handle: RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423005243
    DOI: 10.1016/j.agwat.2023.108659
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423005243
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108659?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423005243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.