IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v244y2021ics0378377420320874.html
   My bibliography  Save this article

Spatial-temporal dynamics of agricultural drought in the Loess Plateau under a changing environment: Characteristics and potential influencing factors

Author

Listed:
  • Han, Zhiming
  • Huang, Qiang
  • Huang, Shengzhi
  • Leng, Guoyong
  • Bai, Qingjun
  • Liang, Hao
  • Wang, Lu
  • Zhao, Jing
  • Fang, Wei

Abstract

Understanding the evolution characteristics of regional drought is crucial to the sustainable development of ecology and social economy, especially in typical water-limited area. However, the exploring the spatial-temporal dynamics of agricultural drought in the Loess Plateau (LP) under global warming and regional vegetation restoration project is still insufficient, and its potential causes remain unresolved. To this end, in this study, the standardized soil moisture index (SSMI) was constructed based on the root soil moisture data of the Global Land Data Assimilation System, and their suitability in monitoring agricultural drought in the LP was evaluated. In addition, it is proposed to describe the spatial-temporal dynamics of agricultural drought with the migration of drought centroid, and to further analyze the influencing factors of agricultural drought. Results show that: (1) the response time of agricultural to meteorological drought in the LP is approximately 9 months, mainly with existence of moderate drought and drought coverage nearly 10–25%, and the probability of exceptionally drought in a short time is low; (2) from 1982 to 2015, the spatial distribution of drought frequency in the LP gradually increased from southeast to northwest, and the agricultural drought in the northwest has the characteristics of frequent occurrence, short duration and weak intensity, with no significant trend of longer duration and weaker intensity; (3) among the 7 droughts screened out by the Drought migration model, the migration direction of drought centroids are mainly east–west, concentrated in the middle of the LP. In the early and late stage of drought, drought migration trends to have a longer path and faster speed, while in the middle it is shorter and denser; (4) significant increasing precipitation (p < 0.01) in the LP has not alleviated agricultural drought, whereas significant increasing temperature (p < 0.01) is the direct factor inducing agricultural drought, and the implementation of vegetation restoration project further aggravates the risk of agricultural drought. This study not only provides scientific guidance for agricultural drought early warning, prevention and mitigation of drought losses in the LP from the perspective of time and space, but also offers a valuable reference for understanding the impact of large-scale vegetation restoration projects.

Suggested Citation

  • Han, Zhiming & Huang, Qiang & Huang, Shengzhi & Leng, Guoyong & Bai, Qingjun & Liang, Hao & Wang, Lu & Zhao, Jing & Fang, Wei, 2021. "Spatial-temporal dynamics of agricultural drought in the Loess Plateau under a changing environment: Characteristics and potential influencing factors," Agricultural Water Management, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:agiwat:v:244:y:2021:i:c:s0378377420320874
    DOI: 10.1016/j.agwat.2020.106540
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420320874
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106540?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu Hao & Xiaoyu Zhang & Shoudong Liu, 2012. "Risk assessment to China’s agricultural drought disaster in county unit," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 785-801, March.
    2. Zhang, Baoqing & Wu, Pute & Zhao, Xining & Wang, Yubao & Wang, Jiawen & Shi, Yinguang, 2012. "Drought variation trends in different subregions of the Chinese Loess Plateau over the past four decades," Agricultural Water Management, Elsevier, vol. 115(C), pages 167-177.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samantaray, Alok Kumar & Ramadas, Meenu & Panda, Rabindra Kumar, 2022. "Changes in drought characteristics based on rainfall pattern drought index and the CMIP6 multi-model ensemble," Agricultural Water Management, Elsevier, vol. 266(C).
    2. J. Drisya & D. Sathish Kumar, 2023. "Evaluation of the drought management measures in a semi-arid agricultural watershed," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 811-833, January.
    3. Zhang, Yitong & Hao, Zengchao & Zhang, Yu, 2023. "Agricultural risk assessment of compound dry and hot events in China," Agricultural Water Management, Elsevier, vol. 277(C).
    4. Benoit Govoeyi & Jean-Baptiste De La Salle Tignégré & Felix Badolo & Paul Alhassan Zaato & Karamoko Sanogo & Birhanu Zemadim Birhanu, 2022. "Perceptions on Sack Gardening in Rural Areas: The Case of Vegetable Stakeholders in Koutiala and Bougouni, Mali," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    5. Li, Yifei & Huang, Shengzhi & Wang, Hanye & Zheng, Xudong & Huang, Qiang & Deng, Mingjiang & Peng, Jian, 2022. "High-resolution propagation time from meteorological to agricultural drought at multiple levels and spatiotemporal scales," Agricultural Water Management, Elsevier, vol. 262(C).
    6. Chunlan Guo & Timothy Sim & Guiwu Su, 2021. "Individual Disaster Preparedness in Drought-and-Flood-Prone Villages in Northwest China: Impact of Place, Out-Migration and Community," IJERPH, MDPI, vol. 18(4), pages 1-14, February.
    7. Xu, Yang & Zhang, Xuan & Hao, Zengchao & Hao, Fanghua & Li, Chong, 2021. "Projections of future meteorological droughts in China under CMIP6 from a three‐dimensional perspective," Agricultural Water Management, Elsevier, vol. 252(C).
    8. Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Xu, Yang & Hao, Fanghua, 2021. "Agricultural drought prediction in China based on drought propagation and large-scale drivers," Agricultural Water Management, Elsevier, vol. 255(C).
    9. Wei Wei & Jiping Wang & Libang Ma & Xufeng Wang & Binbin Xie & Junju Zhou & Haoyan Zhang, 2024. "Global Drought-Wetness Conditions Monitoring Based on Multi-Source Remote Sensing Data," Land, MDPI, vol. 13(1), pages 1-19, January.
    10. Lina Liu & Jingjing Zeng & Xinnian Wu & Jiansheng Qu & Xuemei Li & Jing Zhang & Jinyu Han, 2022. "Review on Eco-Environment Research in the Yellow River Basin: A Bibliometric Perspective," IJERPH, MDPI, vol. 19(19), pages 1-18, September.
    11. Panxing He & Yiyan Zeng & Ningfei Wang & Zhiming Han & Xiaoyu Meng & Tong Dong & Xiaoliang Ma & Shangqian Ma & Jun Ma & Zongjiu Sun, 2023. "Early Evidence That Soil Dryness Causes Widespread Decline in Grassland Productivity in China," Land, MDPI, vol. 12(2), pages 1-17, February.
    12. Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Hao, Fanghua, 2022. "Changes and driving factors of compound agricultural droughts and hot events in eastern China," Agricultural Water Management, Elsevier, vol. 263(C).
    13. Jianying Jia & Junfang Zhao & Heling Wang & Feng Fang & Lanying Han & Funian Zhao, 2023. "Characteristics of the Water Consumption Components of Winter Wheat Fields and Their Effects on the Loess Plateau under Climate Change: An Example at Xifeng Station, Gansu, China," Sustainability, MDPI, vol. 15(11), pages 1-11, June.
    14. Tao He & Wenya Zhang & Hanwen Zhang & Jinliang Sheng, 2023. "Estimation of Manure Emissions Issued from Different Chinese Livestock Species: Potential of Future Production," Agriculture, MDPI, vol. 13(11), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue Zhao & Zaiwu Gong & Wenhao Wang & Kai Luo, 2014. "The comprehensive risk evaluation on rainstorm and flood disaster losses in China mainland from 2004 to 2009: based on the triangular gray correlation theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1001-1016, March.
    2. Huang, Shengzhi & Huang, Qiang & Chang, Jianxia & Leng, Guoyong & Xing, Li, 2015. "The response of agricultural drought to meteorological drought and the influencing factors: A case study in the Wei River Basin, China," Agricultural Water Management, Elsevier, vol. 159(C), pages 45-54.
    3. Vladimir Marković & Imre Nagy & Andras Sik & Kinga Perge & Peter Laszlo & Maria Papathoma-Köhle & Catrin Promper & Thomas Glade, 2016. "Assessing drought and drought-related wildfire risk in Kanjiza, Serbia: the SEERISK methodology," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 709-726, January.
    4. Yuanyuan He & Zaiwu Gong, 2014. "China’s regional rainstorm floods disaster evaluation based on grey incidence multiple-attribute decision model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1125-1144, March.
    5. Naiming Xie & Jianghui Xin & Sifeng Liu, 2014. "China’s regional meteorological disaster loss analysis and evaluation based on grey cluster model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1067-1089, March.
    6. Yang Zhou & Ning Li & Wenxiang Wu & Haolong Liu & Li Wang & Guangxu Liu & Jidong Wu, 2014. "Socioeconomic development and the impact of natural disasters: some empirical evidences from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 541-554, November.
    7. Hao, Lu & Yang, Li-Zhe & Gao, Jing-Min, 2014. "The application of information diffusion technique in probabilistic analysis to grassland biological disasters risk," Ecological Modelling, Elsevier, vol. 272(C), pages 264-270.
    8. Yu Xiaobing & Li Chenliang & Huo Tongzhao & Ji Zhonghui, 2021. "Information diffusion theory-based approach for the risk assessment of meteorological disasters in the Yangtze River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2337-2362, July.
    9. Xining Zhao & Pute Wu, 2013. "Meteorological drought over the Chinese Loess Plateau: 1971–2010," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 951-961, June.
    10. Junfei Chen & Menghua Deng & Lu Xia & Huimin Wang, 2017. "Risk Assessment of Drought, Based on IDM-VFS in the Nanpan River Basin, Yunnan Province, China," Sustainability, MDPI, vol. 9(7), pages 1-16, June.
    11. Wenwen Guo & Shengzhi Huang & Yong Zhao & Guoyong Leng & Xianggui Zhao & Pei Li & Mingqiu Nie & Qiang Huang, 2023. "Quantifying the effects of nonlinear trends of meteorological factors on drought dynamics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2505-2526, July.
    12. Zhao Zhang & Yi Chen & Pin Wang & Shuai Zhang & Fulu Tao & Xiaofei Liu, 2014. "Spatial and temporal changes of agro-meteorological disasters affecting maize production in China since 1990," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 2087-2100, April.
    13. P. Vijaya Kumar & Mohammed Osman & P. K. Mishra, 2019. "Development and application of a new drought severity index for categorizing drought-prone areas: a case study of undivided Andhra Pradesh state, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 793-812, June.
    14. Hao Guo & Xingming Zhang & Fang Lian & Yuan Gao & Degen Lin & Jing’ai Wang, 2016. "Drought Risk Assessment Based on Vulnerability Surfaces: A Case Study of Maize," Sustainability, MDPI, vol. 8(8), pages 1-22, August.
    15. Qi Zhang & Jiquan Zhang, 2016. "Drought hazard assessment in typical corn cultivated areas of China at present and potential climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1323-1331, March.
    16. Qi Zhang & Jiquan Zhang, 2016. "Drought hazard assessment in typical corn cultivated areas of China at present and potential climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1323-1331, March.
    17. Xiaobing Yu & Yiqun Lu & Mei Cai, 2018. "Evaluating agro-meteorological disaster of China based on differential evolution algorithm and VIKOR," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 671-687, November.
    18. Jie Yang & Yimin Wang & Jianxia Chang & Jun Yao & Qiang Huang, 2016. "Integrated assessment for hydrometeorological drought based on Markov chain model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1137-1160, November.
    19. Ximeng Xu & Qiuhong Tang, 2021. "Meteorological disaster frequency at prefecture-level city scale and induced losses in mainland China during 2011–2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 827-844, October.
    20. Jing Zhang & Kaushal Raj Gnyawali & Yi Shang & Yang Pu & Lijuan Miao, 2022. "Spatial agglomeration of drought-affected area detected in northern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 145-161, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:244:y:2021:i:c:s0378377420320874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.