IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v291y2024ics0378377423005048.html
   My bibliography  Save this article

Root-zone aeration improves fruit yield and quality of tomato by enhancement of leaf photosynthetic performance

Author

Listed:
  • Zhang, Zhe
  • Yang, Runya
  • Sun, Junna
  • Li, Yanni
  • Geng, Yajun
  • Pan, Yinghua
  • Zhang, Zhenhua

Abstract

Heavy irrigation and soil compaction cause hypoxic stress in plant roots, which limits crop growth. This issue can be solved by root-zone aeration, but the photophysiological responses of crop plants to the dissolved oxygen (DO) concentration in irrigation water remain unclear. Here, a greenhouse plot experiment was conducted to investigate the changes in leaf photosynthesis and plant growth of tomato (Solanum lycopersicum L. cv. ‘Omanda 3′) under aerated irrigation with various DO concentrations. Plants were treated with three different levels of aeration: 5 mg L–1 DO (conventional subsurface irrigation as a non-aeration control), 15 mg L–1 DO (low aeration treatment), and 30 mg L–1 DO (high aeration treatment). Compared with the control, the aeration treatments promoted electron transport from the primary to secondary plastoquinone acceptors (QA to QB) of photosystem II (PSII) and increased leaf net photosynthetic rate in plants at the seedling, fruit expansion, and maturation stages. The opposite effects of aeration treatments were observed at the flowering and fruit-setting stage. The enhancement of leaf photosynthetic performance contributed to improved plant growth, fruit yield, and quality of tomato as a result of increased oxygen supply in the root zone. The aeration treatments additionally facilitated the biosynthesis and transport of photosynthetic carbon assimilates in plant tissues, as evidenced by increased starch and sucrose contents in the leaves and sucrose content in the roots. However, under the high aeration level, excessive transport of sucrose from leaves to roots hindered further improvements in tomato yield and biomass at the maturation stage. Based on plant photophysiological and yield performance, aerated irrigation with a low concentration of DO (15 mg L–1) is recommended for greenhouse tomato crops during the seedling, fruit expansion, and maturation stages, and there is no need of root-zone aeration at the flowering and fruit-setting stage.

Suggested Citation

  • Zhang, Zhe & Yang, Runya & Sun, Junna & Li, Yanni & Geng, Yajun & Pan, Yinghua & Zhang, Zhenhua, 2024. "Root-zone aeration improves fruit yield and quality of tomato by enhancement of leaf photosynthetic performance," Agricultural Water Management, Elsevier, vol. 291(C).
  • Handle: RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423005048
    DOI: 10.1016/j.agwat.2023.108639
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423005048
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108639?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423005048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.