IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v290y2023ics0378377423004523.html
   My bibliography  Save this article

Optimal nitrogen management to achieve high wheat grain yield, grain protein content, and water productivity: A meta-analysis

Author

Listed:
  • Wang, Yunqi
  • Peng, Yu
  • Lin, Jiaqi
  • Wang, Lixin
  • Jia, Zhikuan
  • Zhang, Rui

Abstract

Nitrogen (N) addition is commonly employed to enhance wheat production, and the effectiveness is strongly influenced by site-specific factors encompassing environmental conditions and crop management practices. However, the current understanding fails to adequately account for the intricate and variable interactions among these factors. Consequently, we conducted a global meta-analysis to quantify the combined contributions of these factors to wheat yield, grain protein content (GPC), and water productivity (WP) and provide recommendations for optimizing N management. The results revealed a significant improvement in grain yield (14.85%), GPC (6.62%), and WP (10.79%) following the application of N. Moreover, higher N addition rates, the utilization of coated N fertilizer, post-anthesis fertilization, and multiple N applications exhibited enhanced outcomes in terms of yield, GPC, and WP in wheat systems. It was observed that applying 100–200 kg/ha of N was the optimal rate for maximizing yield, GPC, and WP. Medium soil texture and humid climate conditions showed a more pronounced increase in yield in response to N addition. Additionally, wheat yield demonstrated a stronger response to N addition benefits when the annual temperature was below 14 °C, while GPC showed a higher increase with temperatures exceeding 14 °C. Furthermore, adopting common N fertilization practices alongside irrigation and implementing pre-anthesis N addition in medium soil texture and humid climate conditions also contributed to achieving optimal wheat performance. The finding of this study serves as a guideline to support on-site N addition practice for wheat and to offer a reference to N management policy design across specific site conditions.

Suggested Citation

  • Wang, Yunqi & Peng, Yu & Lin, Jiaqi & Wang, Lixin & Jia, Zhikuan & Zhang, Rui, 2023. "Optimal nitrogen management to achieve high wheat grain yield, grain protein content, and water productivity: A meta-analysis," Agricultural Water Management, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:agiwat:v:290:y:2023:i:c:s0378377423004523
    DOI: 10.1016/j.agwat.2023.108587
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423004523
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108587?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:290:y:2023:i:c:s0378377423004523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.