IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v289y2023ics0378377423004274.html
   My bibliography  Save this article

Deficit irrigation limits almond trees’ photosynthetic productivity and compromises yields

Author

Listed:
  • Sperling, Or
  • Gardi, Ido
  • Ben-Gal, Alon
  • Kamai, Tamir

Abstract

Almond yields vary between rainfed and intensively irrigated systems, but how to match irrigation to potential productivity is unclear. Hence, we compared almond physiology under deficit (600 mm) and full (1300 mm) irrigation to identify stress indices and determine the production overheads of mismanaged watering. We hypothesized that trees alter their growth to conserve resources during drought and mitigate their hydraulic stress responses. Thus, we monitored stem water potential and stomatal conductance to characterize the hydraulic responses of trees to deficient and hydrated water conditions. Adapting the seasonal relationship between irrigation coefficients and tree water potential was also tested. Finally, soil water status and trunk development were considered physical stress indices for field conditions. Soil water depletion in deficit irrigation reduced stem water potential below − 2 MPa and checked stomatal conductance at 0.15 mol m-2 s-1 for most of the growing season. An empirical productivity model determined that, under deficit irrigation, almond trees suffer from chronic stress that limits their photosynthetic capacity to ∼14 µmol m-2 s-1. Consequently, nominal assimilation limitations (10%) in early summer manifested to 4 kg C tree-1 metabolic losses by autumn. The inter-annual vegetative limitations in deficit irrigation resulted in significant yield reductions (35%) by the second experimental season. Temporal changes in the correlations between stem water potential, stomatal conductance, and trunk contractions made it difficult to use water stress indices to make irrigation decisions. However, normalizing tree performance by phenology indicated a 960 mm irrigation that supported high yields. Further, integrating the variability in soil water with trunk dendrometry illustrated that trees could maintain constant growth between irrigation days under well-watered conditions. Hence, in commercial operations, variable growth rates and trunk contraction measures signal insufficient irrigation and could guide practical irrigation adaptations.

Suggested Citation

  • Sperling, Or & Gardi, Ido & Ben-Gal, Alon & Kamai, Tamir, 2023. "Deficit irrigation limits almond trees’ photosynthetic productivity and compromises yields," Agricultural Water Management, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423004274
    DOI: 10.1016/j.agwat.2023.108562
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423004274
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108562?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423004274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.