IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v288y2023ics0378377423003487.html
   My bibliography  Save this article

Drip irrigation impacts on the root zone soil environment and enrichment characteristics of heavy metals in soybean

Author

Listed:
  • Zhang, Yuhao
  • Hou, Renjie
  • Fu, Qiang
  • Li, Tianxiao
  • Li, Mo
  • Cui, Song
  • Dong, Wencai

Abstract

Soil heavy metal pollution seriously endangers the soil ecological environment and food safety production. In this study, drip irrigation tests with four irrigation frequencies were conducted by controlling the lower limit of the soil matric potential (D1: −10 kPa; D2: −20 kPa; D3: −30 kPa; D4: −40 kPa). Through comparison with traditional surface irrigation, the effect of drip irrigation on the root zone soil environment under heavy metal pollution and the mechanism through which drip irrigation influences soybean heavy metal enrichment characteristics were explored. The conclusions are as follows. (i) Drip irrigation can improve the root zone soil environment of soybean under combined Cd, Pb and Cr(VI) pollution and is conducive to the recovery of bacterial community structure. (ii) Compared with surface irrigation, drip irrigation reduced the contents of Cd, Pb and Cr(VI) in the root zone soil, with maximum reductions of 34.88% (D1), 31.35% (D2) and 34.20% (D2), respectively. (iii) Drip irrigation increased the accumulation of Cd, Pb and Cr(VI) in soybean. However, compared with surface irrigation, drip irrigation changed the distribution of Cd, Pb and Cr(VI) in soybean organs so that more Cd, Pb and Cr(VI) were stored in roots and significantly less Cd and Cr(VI) were stored in seeds, with maximum reductions of 16.62% (D2) and 19.49% (D2), respectively. These results can be used to develop a new strategy for the prevention and control of soil heavy metal pollution.

Suggested Citation

  • Zhang, Yuhao & Hou, Renjie & Fu, Qiang & Li, Tianxiao & Li, Mo & Cui, Song & Dong, Wencai, 2023. "Drip irrigation impacts on the root zone soil environment and enrichment characteristics of heavy metals in soybean," Agricultural Water Management, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:agiwat:v:288:y:2023:i:c:s0378377423003487
    DOI: 10.1016/j.agwat.2023.108483
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423003487
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108483?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Shide & Wan, Shuqin & Kang, Yaohu & Li, Xiaobin, 2021. "Establishing an ecological forest system of salt-tolerant plants in heavily saline wasteland using the drip-irrigation reclamation method," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Wang, Linlin & Wu, Wenyong & Xiao, Juan & Huang, Qiannan & Hu, Yaqi, 2021. "Effects of different drip irrigation modes on water use efficiency of pear trees in Northern China," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Liu, Shuhui & Kang, Yaohu & Wan, Shuqin & Wang, Zhichun & Liang, Zhengwei & Jiang, Shufang & Wang, Ruoshui, 2012. "Germination and growth of Puccinellia tenuiflora in saline-sodic soil under drip irrigation," Agricultural Water Management, Elsevier, vol. 109(C), pages 127-134.
    4. Wang, Jingwei & Du, Yadan & Niu, Wenquan & Han, Jinxian & Li, Yuan & Yang, Pingguo, 2022. "Drip irrigation mode affects tomato yield by regulating root–soil–microbe interactions," Agricultural Water Management, Elsevier, vol. 260(C).
    5. Wang, Jingwei & Niu, Wenquan & Guo, Lili & Liu, Lu & Li, Yuan & Dyck, Miles, 2018. "Drip irrigation with film mulch improves soil alkaline phosphatase and phosphorus uptake," Agricultural Water Management, Elsevier, vol. 201(C), pages 258-267.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Tianjiao, Feng & Dong, Wang & Ruoshui, Wang & Yixin, Wang & Zhiming, Xin & Fengmin, Luo & Yuan, Ma & Xing, Li & Huijie, Xiao & Caballero-Calvo, Andrés & Rodrigo-Comino, Jesús, 2022. "Spatial-temporal heterogeneity of environmental factors and ecosystem functions in farmland shelterbelt systems in desert oasis ecotones," Agricultural Water Management, Elsevier, vol. 271(C).
    3. Wang, Haidong & Wang, Naijiang & Quan, Hao & Zhang, Fucang & Fan, Junliang & Feng, Hao & Cheng, Minghui & Liao, Zhenqi & Wang, Xiukang & Xiang, Youzhen, 2022. "Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 269(C).
    4. Shah, Wasi Ul Hassan & Hao, Gang & Yasmeen, Rizwana & Yan, Hong & Shen, Jintao & Lu, Yuting, 2023. "Role of China's agricultural water policy reforms and production technology heterogeneity on agriculture water usage efficiency and total factor productivity change," Agricultural Water Management, Elsevier, vol. 287(C).
    5. Fu, Xiaoke & Wu, Xiao & Wang, Haoyu & Chen, Yiwen & Wang, Rui & Wang, Yaqi, 2023. "Effects of fertigation with carboxymethyl cellulose potassium on water conservation, salt suppression, and maize growth in salt-affected soil," Agricultural Water Management, Elsevier, vol. 287(C).
    6. Ruifeng Sun & Juanjuan Ma & Xihuan Sun & Lijian Zheng & Jiachang Guo, 2023. "Responses of the Leaf Water Physiology and Yield of Grapevine via Different Irrigation Strategies in Extremely Arid Areas," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    7. Sun, Jiaxia & Kang, Yaohu & Wan, Shuqin, 2013. "Effects of an imbedded gravel–sand layer on reclamation of coastal saline soils under drip irrigation and on plant growth," Agricultural Water Management, Elsevier, vol. 123(C), pages 12-19.
    8. Li, Xiaobin & Kang, Yaohu, 2020. "Agricultural utilization and vegetation establishment on saline-sodic soils using a water–salt regulation method for scheduled drip irrigation," Agricultural Water Management, Elsevier, vol. 231(C).
    9. Jin Guo & Lijian Zheng & Juanjuan Ma & Xufeng Li & Ruixia Chen, 2023. "Meta-Analysis of the Effect of Subsurface Irrigation on Crop Yield and Water Productivity," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
    10. do Amaral, Marcos Antonio Correa Matos & Coelho, Rubens Duarte & de Oliveira Costa, Jéfferson & de Sousa Pereira, Diego José & de Camargo, Antonio Pires, 2022. "Dripper clogging by soil particles entering lateral lines directly during irrigation network assembly in the field," Agricultural Water Management, Elsevier, vol. 273(C).
    11. Zhang, Tibin & Dong, Qin’ge & Zhan, Xiaoyun & He, Jianqiang & Feng, Hao, 2019. "Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production," Agricultural Water Management, Elsevier, vol. 213(C), pages 636-645.
    12. Zhang, Haowen & Liang, Qing & Peng, Zhengping & Zhao, Yi & Tan, Yuechen & Zhang, Xin & Bol, Roland, 2023. "Response of greenhouse gases emissions and yields to irrigation and straw practices in wheat-maize cropping system," Agricultural Water Management, Elsevier, vol. 282(C).
    13. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Zheng, Jing & Wu, Lifeng & Lu, Junsheng, 2022. "Quantifying nutrient stoichiometry and radiation use efficiency of two maize cultivars under various water and fertilizer management practices in northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    14. Yang, Wenjia & Yan, Naitong & Zhang, Jiali & Yan, Jiakun & Ma, Dengke & Wang, Shiwen & Yin, Lina, 2022. "The applicability of water-permeable plastic film and biodegradable film as alternatives to polyethylene film in crops on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 274(C).
    15. Shen, Yan & Puig-Bargués, Jaume & Li, Mengyao & Xiao, Yang & Li, Qiang & Li, Yunkai, 2022. "Physical, chemical and biological emitter clogging behaviors in drip irrigation systems using high-sediment loaded water," Agricultural Water Management, Elsevier, vol. 270(C).
    16. Chen, Weijie & Bastida, Felipe & Liu, Yanzheng & Zhou, Yunpeng & He, Jing & Song, Peng & Kuang, Naikun & Li, Yunkai, 2023. "Nanobubble oxygenated increases crop production via soil structure improvement: The perspective of microbially mediated effects," Agricultural Water Management, Elsevier, vol. 282(C).
    17. Chengkun Wang & Nannan Zhang & Mingzhe Li & Li Li & Tiecheng Bai, 2022. "Pear Tree Growth Simulation and Soil Moisture Assessment Considering Pruning," Agriculture, MDPI, vol. 12(10), pages 1-26, October.
    18. Coelho, Rubens Duarte & Almeida, Alex Nunes de & Costa, Jéfferson de Oliveira & Pereira, Diego José de Sousa, 2022. "Mobile drip irrigation (MDI): Clogging of high flow emitters caused by dragging of driplines on the ground and by solid particles in the irrigation water," Agricultural Water Management, Elsevier, vol. 263(C).
    19. Dong, Shide & Wang, Guangmei & Kang, Yaohu & Ma, Qian & Wan, Shuqin, 2022. "Soil water and salinity dynamics under the improved drip-irrigation scheduling for ecological restoration in the saline area of Yellow River basin," Agricultural Water Management, Elsevier, vol. 264(C).
    20. Li, Wenlong & Gu, Xiaobo & Du, Yadan & Zheng, Xiaobo & Lu, Shiyu & Cheng, Zhikai & Cai, Wenjing & Chang, Tian, 2023. "Optimizing nitrogen, phosphorus, and potassium fertilization regimes to improve maize productivity under double ridge-furrow planting with full film mulching," Agricultural Water Management, Elsevier, vol. 287(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:288:y:2023:i:c:s0378377423003487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.