IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v286y2023ics0378377423002603.html
   My bibliography  Save this article

Use of the VegSyst model to simulate seasonal dry matter production, N and K uptake and evapotranspiration in greenhouse soil-grown tomato in Uruguay

Author

Listed:
  • Berrueta, Cecilia
  • Grasso, Rafael
  • García, Claudio
  • Thompson, Rodney B.
  • Gallardo, Marisa

Abstract

The VegSyst model, initially developed for nitrogen (N) and irrigation recommendations for greenhouse-grown vegetable crops in southeastern Spain, was calibrated and validated for greenhouse tomato cultivated in soil in Uruguay (South America) for autumn and spring growing seasons. Additionally, the performance of the recalibrated VegSyst model was compared to the calibration for tomato grown in Almeria greenhouses of VegSyst model V3. Five tomato crops, three autumn and two spring crops grown in 2019, 2020 and 2021, were used for model calibration (Spring-19 and Autumn-20) and validation (Autumn-19, Spring-21 and Autumn-21). A major change to the existing VegSyst model (V3) was the incorporation of the Hargreaves-Samani equation adapted to plastic greenhouses to estimate ETo. The recalibrated VegSyst model accurately simulated dry matter production (DMP), ETc, and crop N and K uptake over time for autumn and spring growing seasons. Using the original VegSyst V3 calibration, acceptable results were obtained for DMP and N uptake. A new dilution curve for N content was included. It was derived from pooled data and was described by the power equation %N = 3.4117 x DMP−0.153 (R2 of 0.84). Both, this dilution curve and the critical N curve of VegSyst V3 provided accurate simulation of crop N uptake. Therefore, both can be used in Uruguayan conditions. K uptake simulations were accurate according to the statistical indices used. This was despite that the K dilution curve of %K = 4.359 x DMP−0.005 had a low R2 value. Moreover, simulation with this K dilution curve provided better results than with the dilution curve of VegSyst V3. A decision support system based on the recalibrated VegSyst model will be developed to assist Uruguayan farmers and advisers. It will provide calculation of daily irrigation needs and nutrient concentration tailored to each crop and greenhouse.

Suggested Citation

  • Berrueta, Cecilia & Grasso, Rafael & García, Claudio & Thompson, Rodney B. & Gallardo, Marisa, 2023. "Use of the VegSyst model to simulate seasonal dry matter production, N and K uptake and evapotranspiration in greenhouse soil-grown tomato in Uruguay," Agricultural Water Management, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:agiwat:v:286:y:2023:i:c:s0378377423002603
    DOI: 10.1016/j.agwat.2023.108395
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423002603
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gallardo, M. & Fernández, M.D. & Giménez, C. & Padilla, F.M. & Thompson, R.B., 2016. "Revised VegSyst model to calculate dry matter production, critical N uptake and ETc of several vegetable species grown in Mediterranean greenhouses," Agricultural Systems, Elsevier, vol. 146(C), pages 30-43.
    2. Orgaz, F. & Fernandez, M.D. & Bonachela, S. & Gallardo, M. & Fereres, E., 2005. "Evapotranspiration of horticultural crops in an unheated plastic greenhouse," Agricultural Water Management, Elsevier, vol. 72(2), pages 81-96, March.
    3. Gallardo, M. & Giménez, C. & Martínez-Gaitán, C. & Stöckle, C.O. & Thompson, R.B. & Granados, M.R., 2011. "Evaluation of the VegSyst model with muskmelon to simulate crop growth, nitrogen uptake and evapotranspiration," Agricultural Water Management, Elsevier, vol. 101(1), pages 107-117.
    4. Gallardo, Marisa & Peña-Fleitas, María Teresa & Giménez, Carmen & Padilla, Francisco M. & Thompson, Rodney B., 2023. "Adaptation of VegSyst-DSS for macronutrient recommendations of fertigated, soil-grown, greenhouse vegetable crops," Agricultural Water Management, Elsevier, vol. 278(C).
    5. Yang, J.M. & Yang, J.Y. & Liu, S. & Hoogenboom, G., 2014. "An evaluation of the statistical methods for testing the performance of crop models with observed data," Agricultural Systems, Elsevier, vol. 127(C), pages 81-89.
    6. Giménez, C. & Thompson, R.B. & Prieto, M.H. & Suárez-Rey, E. & Padilla, F.M. & Gallardo, M., 2019. "Adaptation of the VegSyst model to outdoor conditions for leafy vegetables and processing tomato," Agricultural Systems, Elsevier, vol. 171(C), pages 51-64.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gallardo, Marisa & Elia, Antonio & Thompson, Rodney B., 2020. "Decision support systems and models for aiding irrigation and nutrient management of vegetable crops," Agricultural Water Management, Elsevier, vol. 240(C).
    2. Giménez, C. & Thompson, R.B. & Prieto, M.H. & Suárez-Rey, E. & Padilla, F.M. & Gallardo, M., 2019. "Adaptation of the VegSyst model to outdoor conditions for leafy vegetables and processing tomato," Agricultural Systems, Elsevier, vol. 171(C), pages 51-64.
    3. Gallardo, M. & Fernández, M.D. & Giménez, C. & Padilla, F.M. & Thompson, R.B., 2016. "Revised VegSyst model to calculate dry matter production, critical N uptake and ETc of several vegetable species grown in Mediterranean greenhouses," Agricultural Systems, Elsevier, vol. 146(C), pages 30-43.
    4. Soto, F. & Thompson, R.B. & Granados, M.R. & Martínez-Gaitán, C. & Gallardo, M., 2018. "Simulation of agronomic and nitrate pollution related parameters in vegetable cropping sequences in Mediterranean greenhouses using the EU-Rotate_N model," Agricultural Water Management, Elsevier, vol. 199(C), pages 175-189.
    5. Gallardo, Marisa & Peña-Fleitas, María Teresa & Giménez, Carmen & Padilla, Francisco M. & Thompson, Rodney B., 2023. "Adaptation of VegSyst-DSS for macronutrient recommendations of fertigated, soil-grown, greenhouse vegetable crops," Agricultural Water Management, Elsevier, vol. 278(C).
    6. Liang, Hao & Lv, Haofeng & Batchelor, William D. & Lian, Xiaojuan & Wang, Zhengxiang & Lin, Shan & Hu, Kelin, 2020. "Simulating nitrate and DON leaching to optimize water and N management practices for greenhouse vegetable production systems," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Soto, F. & Gallardo, M. & Giménez, C. & Peña-Fleitas, T. & Thompson, R.B., 2014. "Simulation of tomato growth, water and N dynamics using the EU-Rotate_N model in Mediterranean greenhouses with drip irrigation and fertigation," Agricultural Water Management, Elsevier, vol. 132(C), pages 46-59.
    8. Incrocci, Luca & Thompson, Rodney B. & Fernandez-Fernandez, María Dolores & De Pascale, Stefania & Pardossi, Alberto & Stanghellini, Cecilia & Rouphael, Youssef & Gallardo, Marisa, 2020. "Irrigation management of European greenhouse vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    9. Phogat, V. & Mallants, Dirk & Cox, J.W. & Šimůnek, J. & Oliver, D.P. & Awad, J., 2020. "Management of soil salinity associated with irrigation of protected crops," Agricultural Water Management, Elsevier, vol. 227(C).
    10. Cahn, Michael & Smith, Richard & Melton, Forrest, 2023. "Field evaluations of the CropManage decision support tool for improving irrigation and nutrient use of cool season vegetables in California," Agricultural Water Management, Elsevier, vol. 287(C).
    11. Tang, Ruoling & Supit, Iwan & Hutjes, Ronald & Zhang, Fen & Wang, Xiaozhong & Chen, Xuanjing & Zhang, Fusuo & Chen, Xinping, 2023. "Modelling growth of chili pepper (Capsicum annuum L.) with the WOFOST model," Agricultural Systems, Elsevier, vol. 209(C).
    12. Bohua Yu & Wei Song & Yanqing Lang, 2017. "Spatial Patterns and Driving Forces of Greenhouse Land Change in Shouguang City, China," Sustainability, MDPI, vol. 9(3), pages 1-15, March.
    13. Nasca, J.A. & Feldkamp, C.R. & Arroquy, J.I. & Colombatto, D., 2015. "Efficiency and stability in subtropical beef cattle grazing systems in the northwest of Argentina," Agricultural Systems, Elsevier, vol. 133(C), pages 85-96.
    14. Amouzou, Kokou Adambounou & Naab, Jesse B. & Lamers, John P.A. & Borgemeister, Christian & Becker, Mathias & Vlek, Paul L.G., 2018. "CROPGRO-Cotton model for determining climate change impacts on yield, water- and N- use efficiencies of cotton in the Dry Savanna of West Africa," Agricultural Systems, Elsevier, vol. 165(C), pages 85-96.
    15. Shi, Xinrui & Batchelor, William D. & Liang, Hao & Li, Sien & Li, Baoguo & Hu, Kelin, 2020. "Determining optimal water and nitrogen management under different initial soil mineral nitrogen levels in northwest China based on a model approach," Agricultural Water Management, Elsevier, vol. 234(C).
    16. Marrou, Hélène & Ghanem, Michel Edmond & Amri, Moez & Maalouf, Fouad & Ben Sadoun, Sarah & Kibbou, Fatimaezzhara & Sinclair, Thomas R., 2021. "Restrictive irrigation improves yield and reduces risk for faba bean across the Middle East and North Africa: A modeling study," Agricultural Systems, Elsevier, vol. 189(C).
    17. Kamini Yadav & Hatim M. E. Geli, 2021. "Prediction of Crop Yield for New Mexico Based on Climate and Remote Sensing Data for the 1920–2019 Period," Land, MDPI, vol. 10(12), pages 1-27, December.
    18. Maisa’a W. Shammout & Tala Qtaishat & Hala Rawabdeh & Muhammad Shatanawi, 2018. "Improving Water Use Efficiency under Deficit Irrigation in the Jordan Valley," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    19. Gallardo, M. & Giménez, C. & Martínez-Gaitán, C. & Stöckle, C.O. & Thompson, R.B. & Granados, M.R., 2011. "Evaluation of the VegSyst model with muskmelon to simulate crop growth, nitrogen uptake and evapotranspiration," Agricultural Water Management, Elsevier, vol. 101(1), pages 107-117.
    20. Gallardo, M. & Thompson, R.B. & Rodríguez, J.S. & Rodríguez, F. & Fernández, M.D. & Sánchez, J.A. & Magán, J.J., 2009. "Simulation of transpiration, drainage, N uptake, nitrate leaching, and N uptake concentration in tomato grown in open substrate," Agricultural Water Management, Elsevier, vol. 96(12), pages 1773-1784, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:286:y:2023:i:c:s0378377423002603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.