IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v286y2023ics0378377423002500.html
   My bibliography  Save this article

A methodology to optimize site-specific field capacity and irrigation thresholds

Author

Listed:
  • Kumar, Hemendra
  • Srivastava, Puneet
  • Lamba, Jasmeet
  • Lena, Bruno
  • Diamantopoulos, Efstathios
  • Ortiz, Brenda
  • Takhellambam, Bijoychandra
  • Morata, Guilherme
  • Bondesan, Luca

Abstract

The determination of field capacity (FC), irrigation thresholds, and irrigation amounts is characterized by site-specific soil hydraulic properties (SHPs). This study, conducted in two zones (zone 1 and zone 2) delineated based on soil, topography, and historical crop yield in Alabama (USA), focused on determining zone-specific FC using negligible drainage flux qfc criterion. The HYDRUS-1D model was used to optimize zone-specific SHPs using measured soil matric potential (h). The zone-specific FCs were determined using optimized and raw SHPs at 0.01 cm/day as qfc. The results showed that the optimized FC at qfc was at −39 kPa in zone 1 and raw FC was at −15 kPa. However, in zone 2, optimized FC was at −25 kPa and raw FC was at −59 kPa. To validate that optimized values are more accurate than raw values, a relationship between accumulated crop evapotranspiration (ETc) and required irrigation amount was determined using optimized parameters (SHPs and FC) and showed a stronger correlation in both zones than using raw parameters (SHPs and FC). At flux-based FC, the optimized irrigation thresholds and amounts in zone 1 were −88 kPa and 20 mm, and raw irrigation threshold and amount were −58 kPa and 33 mm, respectively. In zone 2, the optimized irrigation thresholds and amounts were −45 kPa and 18 mm, and raw irrigation threshold and amount were −116 kPa and 14 mm, respectively. Therefore, using raw and benchmark FC can result in inefficient irrigation strategies. The proposed novel method of optimizing zone-specific FC and irrigation thresholds can help with adopting timely best irrigation management schemes in respective zones.

Suggested Citation

  • Kumar, Hemendra & Srivastava, Puneet & Lamba, Jasmeet & Lena, Bruno & Diamantopoulos, Efstathios & Ortiz, Brenda & Takhellambam, Bijoychandra & Morata, Guilherme & Bondesan, Luca, 2023. "A methodology to optimize site-specific field capacity and irrigation thresholds," Agricultural Water Management, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:agiwat:v:286:y:2023:i:c:s0378377423002500
    DOI: 10.1016/j.agwat.2023.108385
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423002500
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lena, Bruno Patias & Bondesan, Luca & Pinheiro, Everton Alves Rodrigues & Ortiz, Brenda V. & Morata, Guilherme Trimer & Kumar, Hemendra, 2022. "Determination of irrigation scheduling thresholds based on HYDRUS-1D simulations of field capacity for multilayered agronomic soils in Alabama, USA," Agricultural Water Management, Elsevier, vol. 259(C).
    2. Li, Yong & Šimůnek, Jirka & Jing, Longfei & Zhang, Zhentin & Ni, Lixiao, 2014. "Evaluation of water movement and water losses in a direct-seeded-rice field experiment using Hydrus-1D," Agricultural Water Management, Elsevier, vol. 142(C), pages 38-46.
    3. Kumar, Hemendra & Srivastava, Puneet & Lamba, Jasmeet & Diamantopoulos, Efstathios & Ortiz, Brenda & Morata, Guilherme & Takhellambam, Bijoychandra & Bondesan, Luca, 2022. "Site-specific irrigation scheduling using one-layer soil hydraulic properties and inverse modeling," Agricultural Water Management, Elsevier, vol. 273(C).
    4. Pinheiro, Everton Alves Rodrigues & de Jong van Lier, Quirijn & Inforsato, Leonardo & Šimůnek, Jirka, 2019. "Measuring full-range soil hydraulic properties for the prediction of crop water availability using gamma-ray attenuation and inverse modeling," Agricultural Water Management, Elsevier, vol. 216(C), pages 294-305.
    5. Liang, Xi & Liakos, Vasilis & Wendroth, Ole & Vellidis, George, 2016. "Scheduling irrigation using an approach based on the van Genuchten model," Agricultural Water Management, Elsevier, vol. 176(C), pages 170-179.
    6. de Jong van Lier, Quirijn, 2017. "Field capacity, a valid upper limit of crop available water?," Agricultural Water Management, Elsevier, vol. 193(C), pages 214-220.
    7. Fontanet, Mireia & Scudiero, Elia & Skaggs, Todd H. & Fernàndez-Garcia, Daniel & Ferrer, Francesc & Rodrigo, Gema & Bellvert, Joaquim, 2020. "Dynamic Management Zones for Irrigation Scheduling," Agricultural Water Management, Elsevier, vol. 238(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Hemendra & Srivastava, Puneet & Lamba, Jasmeet & Diamantopoulos, Efstathios & Ortiz, Brenda & Morata, Guilherme & Takhellambam, Bijoychandra & Bondesan, Luca, 2022. "Site-specific irrigation scheduling using one-layer soil hydraulic properties and inverse modeling," Agricultural Water Management, Elsevier, vol. 273(C).
    2. Lena, Bruno Patias & Bondesan, Luca & Pinheiro, Everton Alves Rodrigues & Ortiz, Brenda V. & Morata, Guilherme Trimer & Kumar, Hemendra, 2022. "Determination of irrigation scheduling thresholds based on HYDRUS-1D simulations of field capacity for multilayered agronomic soils in Alabama, USA," Agricultural Water Management, Elsevier, vol. 259(C).
    3. Pinheiro, Everton Alves Rodrigues & de Jong van Lier, Quirijn & Šimůnek, Jirka, 2019. "The role of soil hydraulic properties in crop water use efficiency: A process-based analysis for some Brazilian scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 364-377.
    4. Nandi, R. & Mondal, K. & Singh, K.C. & Saha, M. & Bandyopadhyay, P.K. & Ghosh, P.K., 2021. "Yield-water relationships of lentil grown under different rice establishments in Lower Gangetic Plain of India," Agricultural Water Management, Elsevier, vol. 246(C).
    5. El-Naggar, A.G. & Hedley, C.B. & Horne, D. & Roudier, P. & Clothier, B.E., 2020. "Soil sensing technology improves application of irrigation water," Agricultural Water Management, Elsevier, vol. 228(C).
    6. Mompremier, R. & Her, Y. & Hoogenboom, G. & Migliaccio, K. & Muñoz-Carpena, R. & Brym, Z. & Colbert, R.W. & Jeune, W., 2021. "Modeling the response of dry bean yield to irrigation water availability controlled by watershed hydrology," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Li, Yong & Šimůnek, Jirka & Zhang, Zhentin & Jing, Longfei & Ni, Lixiao, 2015. "Evaluation of nitrogen balance in a direct-seeded-rice field experiment using Hydrus-1D," Agricultural Water Management, Elsevier, vol. 148(C), pages 213-222.
    8. Kaiwen Chen & Shuang’en Yu & Tao Ma & Jihui Ding & Pingru He & Yao Li & Yan Dai & Guangquan Zeng, 2022. "Modeling the Water and Nitrogen Management Practices in Paddy Fields with HYDRUS-1D," Agriculture, MDPI, vol. 12(7), pages 1-18, June.
    9. Chen, Ning & Li, Xianyue & Shi, Haibin & Yan, Jianwen & Zhang, Yuehong & Hu, Qi, 2023. "Evaluating the effects of plastic film mulching duration on soil nitrogen dynamic and comprehensive benefit for corn (Zea mays L.) field," Agricultural Water Management, Elsevier, vol. 286(C).
    10. Beyene, Abebech & Cornelis, Wim & Verhoest, Niko E.C. & Tilahun, Seifu & Alamirew, Tena & Adgo, Enyew & De Pue, Jan & Nyssen, Jan, 2018. "Estimating the actual evapotranspiration and deep percolation in irrigated soils of a tropical floodplain, northwest Ethiopia," Agricultural Water Management, Elsevier, vol. 202(C), pages 42-56.
    11. Krevh, Vedran & Filipović, Lana & Petošić, Dragutin & Mustać, Ivan & Bogunović, Igor & Butorac, Jasminka & Kisić, Ivica & Defterdarović, Jasmina & Nakić, Zoran & Kovač, Zoran & Pereira, Paulo & He, Ha, 2023. "Long-term analysis of soil water regime and nitrate dynamics at agricultural experimental site: Field-scale monitoring and numerical modeling using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 275(C).
    12. Haghnazari, Farzad & Karandish, Fatemeh & Darzi-Naftchali, Abdullah & Šimůnek, Jiří, 2020. "Dynamic assessment of the impacts of global warming on nitrate losses from a subsurface-drained rainfed-canola field," Agricultural Water Management, Elsevier, vol. 242(C).
    13. Abd El-Mageed, Taia A. & El- Samnoudi, Ibrahim M. & Ibrahim, Abd El-Aty M. & Abd El Tawwab, Ahmed R., 2018. "Compost and mulching modulates morphological, physiological responses and water use efficiency in sorghum (bicolor L. Moench) under low moisture regime," Agricultural Water Management, Elsevier, vol. 208(C), pages 431-439.
    14. Feng, Zhuangzhuang & Miao, Qingfeng & Shi, Haibin & Feng, Weiying & Li, Xianyue & Yan, Jianwen & Liu, Meihan & Sun, Wei & Dai, Liping & Liu, Jing, 2023. "Simulation of water balance and irrigation strategy of typical sand-layered farmland in the Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 280(C).
    15. Dongping Xue & Heng Dai & Yi Liu & Yunfei Liu & Lei Zhang & Wengai Lv, 2022. "Interaction Simulation of Vadose Zone Water and Groundwater in Cele Oasis: Assessment of the Impact of Agricultural Intensification, Northwestern China," Agriculture, MDPI, vol. 12(5), pages 1-18, April.
    16. Xu, Baoli & Shao, Dongguo & Tan, Xuezhi & Yang, Xia & Gu, Wenquan & Li, Haoxin, 2017. "Evaluation of soil water percolation under different irrigation practices, antecedent moisture and groundwater depths in paddy fields," Agricultural Water Management, Elsevier, vol. 192(C), pages 149-158.
    17. Zhou, Hong & Zhao, Wen zhi, 2019. "Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 286-302.
    18. Fontanet, Mireia & Scudiero, Elia & Skaggs, Todd H. & Fernàndez-Garcia, Daniel & Ferrer, Francesc & Rodrigo, Gema & Bellvert, Joaquim, 2020. "Dynamic Management Zones for Irrigation Scheduling," Agricultural Water Management, Elsevier, vol. 238(C).
    19. Hongbo Wang & Hui Cao & Fuchang Jiang & Xingpeng Wang & Yang Gao, 2022. "Analysis of Soil Moisture, Temperature, and Salinity in Cotton Field under Non-Mulched Drip Irrigation in South Xinjiang," Agriculture, MDPI, vol. 12(10), pages 1-15, October.
    20. Yi Wang & Chengsheng Ni & Sheng Wang & Deti Xie & Jiupai Ni, 2021. "A Reliable U-trough Runoff Collection Method for Quantifying the Migration Loads of Nutrients at Different Soil Layers under Natural Rainfall," Sustainability, MDPI, vol. 13(4), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:286:y:2023:i:c:s0378377423002500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.