IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v279y2023ics0378377423000483.html
   My bibliography  Save this article

Water stress, yield, and grape quality in a hilly rainfed “Aglianico” vineyard grown in two different soils along a slope

Author

Listed:
  • Albrizio, R.
  • Puig-Sirera, À.
  • Sellami, M.H.
  • Guida, G.
  • Basile, A.
  • Bonfante, A.
  • Gambuti, A.
  • Giorio, P.

Abstract

Vineyards from hilly areas of the Mediterranean region are mostly grown in shallow soils that present low soil water holding capacity. These vineyards are prone to water stress conditions, which if well managed can raise the grape quality potential. This study aimed to investigate the water stress development in an “Aglianico” vineyard grown along a 90 m slope. The two-year (2011–2012) trial was conducted in two soils having different hydraulic properties, the Up-slope with lower soil water holding capacity than the Down-slope site. The results showed that grapevines were more stressed in the Up-slope soil than in the Down-slope soil, as reflected by the higher crop water stress index, lower leaf water potential and leaf gas exchanges values. Consequently, the yield was significantly lower by 40% in the Up-slope, which was determined by the lower weight and volume of berries. The smaller berries improved must quality parameters of total soluble solids, total polyphenols, total anthocyanins, and color intensity within a range of 4–25% higher in the Up-slope compared to the Down-slope site. Moreover, the pre-veraison stress experienced in 2012 reduced yield by 30% and depressed berry weight and volume, compared to 2011. The post-veraison stress induced the improvement of must quality, mainly in the Up-slope 2011. Interestingly, there was no significant difference in the pH and titratable acidity between both sites, which indicates the ability of Up-slope vines to make up for more stressful conditions, and, thus, their resilient behavior to maintain their high-quality wine. This study highlights that vineyards in hilly areas may benefit from a differentiated management between different viticulture zones to bring up their high-quality wine.

Suggested Citation

  • Albrizio, R. & Puig-Sirera, À. & Sellami, M.H. & Guida, G. & Basile, A. & Bonfante, A. & Gambuti, A. & Giorio, P., 2023. "Water stress, yield, and grape quality in a hilly rainfed “Aglianico” vineyard grown in two different soils along a slope," Agricultural Water Management, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:agiwat:v:279:y:2023:i:c:s0378377423000483
    DOI: 10.1016/j.agwat.2023.108183
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423000483
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 2020. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899, May.
    2. Bonfante, A. & Alfieri, S.M. & Albrizio, R. & Basile, A. & De Mascellis, R. & Gambuti, A. & Giorio, P. & Langella, G. & Manna, P. & Monaco, E. & Moio, L. & Terribile, F., 2017. "Evaluation of the effects of future climate change on grape quality through a physically based model application: a case study for the Aglianico grapevine in Campania region, Italy," Agricultural Systems, Elsevier, vol. 152(C), pages 100-109.
    3. Josse, Julie & Husson, François, 2016. "missMDA: A Package for Handling Missing Values in Multivariate Data Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i01).
    4. S. M. Alfieri & M. Riccardi & M. Menenti & A. Basile & A. Bonfante & F. Lorenzi, 2019. "Adaptability of global olive cultivars to water availability under future Mediterranean climate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(3), pages 435-466, March.
    5. Basile, Angelo & Albrizio, Rossella & Autovino, Dario & Bonfante, Antonello & De Mascellis, Roberto & Terribile, Fabio & Giorio, Pasquale, 2020. "A modelling approach to discriminate contributions of soil hydrological properties and slope gradient to water stress in Mediterranean vineyards," Agricultural Water Management, Elsevier, vol. 241(C).
    6. Bota, J. & Tomás, M. & Flexas, J. & Medrano, H. & Escalona, J.M., 2016. "Differences among grapevine cultivars in their stomatal behavior and water use efficiency under progressive water stress," Agricultural Water Management, Elsevier, vol. 164(P1), pages 91-99.
    7. Ferrer, Juan-Carlos & Mac Cawley, Alejandro & Maturana, Sergio & Toloza, Sergio & Vera, Jorge, 2008. "An optimization approach for scheduling wine grape harvest operations," International Journal of Production Economics, Elsevier, vol. 112(2), pages 985-999, April.
    8. Intrigliolo, D.S. & Lizama, V. & García-Esparza, M.J. & Abrisqueta, I. & Álvarez, I., 2016. "Effects of post-veraison irrigation regime on Cabernet Sauvignon grapevines in Valencia, Spain: Yield and grape composition," Agricultural Water Management, Elsevier, vol. 170(C), pages 110-119.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    2. Jan Kluge & Sarah Lappöhn & Kerstin Plank, 2023. "Predictors of TFP growth in European countries," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 50(1), pages 109-140, February.
    3. Tuğçe Taşkıner & Bilge Bilgen, 2021. "Optimization Models for Harvest and Production Planning in Agri-Food Supply Chain: A Systematic Review," Logistics, MDPI, vol. 5(3), pages 1-27, August.
    4. Cahen-Fourot, Louison & Campiglio, Emanuele & Dawkins, Elena & Godin, Antoine & Kemp-Benedict, Eric, 2020. "Looking for the Inverted Pyramid: An Application Using Input-Output Networks," Ecological Economics, Elsevier, vol. 169(C).
    5. Lodree Jr., Emmett J. & Uzochukwu, Benedict M., 2008. "Production planning for a deteriorating item with stochastic demand and consumer choice," International Journal of Production Economics, Elsevier, vol. 116(2), pages 219-232, December.
    6. Elamri, Y. & Cheviron, B. & Lopez, J.-M. & Dejean, C. & Belaud, G., 2018. "Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces," Agricultural Water Management, Elsevier, vol. 208(C), pages 440-453.
    7. Althouse, Jeffrey & Cahen-Fourot, Louison & Carballa-Smichowski, Bruno & Durand, Cédric & Knauss, Steven, 2023. "Ecologically unequal exchange and uneven development patterns along global value chains," World Development, Elsevier, vol. 170(C).
    8. Omar Ahumada & J. Villalobos, 2011. "A tactical model for planning the production and distribution of fresh produce," Annals of Operations Research, Springer, vol. 190(1), pages 339-358, October.
    9. Paolo Fornaro & Henri Luomaranta, 2020. "Nowcasting Finnish real economic activity: a machine learning approach," Empirical Economics, Springer, vol. 58(1), pages 55-71, January.
    10. Víctor M. Albornoz & Lia C. Araneda & Rodrigo Ortega, 2022. "Planning and scheduling of selective harvest with management zones delineation," Annals of Operations Research, Springer, vol. 316(2), pages 873-890, September.
    11. Mu, Qing & Cai, Huanjie & Sun, Shikun & Wen, Shanshan & Xu, Jiatun & Dong, Mengqi & Saddique, Qaisar, 2021. "The physiological response of winter wheat under short-term drought conditions and the sensitivity of different indices to soil water changes," Agricultural Water Management, Elsevier, vol. 243(C).
    12. Seán Schmitz & Sophia Becker & Laura Weiand & Norman Niehoff & Frank Schwartzbach & Erika von Schneidemesser, 2019. "Determinants of Public Acceptance for Traffic-Reducing Policies to Improve Urban Air Quality," Sustainability, MDPI, vol. 11(14), pages 1-16, July.
    13. Petruzzellis, Francesco & Natale, Sara & Bariviera, Luca & Calderan, Alberto & Mihelčič, Alenka & Reščič, Jan & Sivilotti, Paolo & Šuklje, Katja & Lisjak, Klemen & Vanzo, Andreja & Nardini, Andrea, 2022. "High spatial heterogeneity of water stress levels in Refošk grapevines cultivated in Classical Karst," Agricultural Water Management, Elsevier, vol. 260(C).
    14. Jakob Fiedler & Josef Ruzicka & Thomas Theobald, 2019. "The Real-Time Information Content of Financial Stress and Bank Lending on European Business Cycles," IMK Working Paper 198-2019, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    15. Li, Xinxin & Liu, Hongguang & Li, Jing & He, Xinlin & Gong, Ping & Lin, En & Li, Kaiming & Li, Ling & Binley, Andrew, 2020. "Experimental study and multi–objective optimization for drip irrigation of grapes in arid areas of northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    16. Jiang, Wei & Josse, Julie & Lavielle, Marc, 2020. "Logistic regression with missing covariates—Parameter estimation, model selection and prediction within a joint-modeling framework," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    17. Nicholas Tierney & Dianne Cook, 2018. "Expanding tidy data principles to facilitate missing data exploration, visualization and assessment of imputations," Monash Econometrics and Business Statistics Working Papers 14/18, Monash University, Department of Econometrics and Business Statistics.
    18. Pernot, Delphine, 2021. "Internet shopping for Everyday Consumer Goods: An examination of the purchasing and travel practices of click and pickup outlet customers," Research in Transportation Economics, Elsevier, vol. 87(C).
    19. Ettie M. Lipner & Joshua French & Carleton R. Bern & Katherine Walton-Day & David Knox & Michael Strong & D. Rebecca Prevots & James L. Crooks, 2020. "Nontuberculous Mycobacterial Disease and Molybdenum in Colorado Watersheds," IJERPH, MDPI, vol. 17(11), pages 1-15, May.
    20. Albers, Thilo N. H. & Kersting, Felix & Kosse, Fabian, 2023. "Income misperception and populism," W.E.P. - Würzburg Economic Papers 104, University of Würzburg, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:279:y:2023:i:c:s0378377423000483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.