IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v269y2022ics0378377422001949.html
   My bibliography  Save this article

Impact of zebra chip disease and irrigation levels on potato production

Author

Listed:
  • O’Shaughnessy, Susan A.
  • Rho, Hyungmin
  • Colaizzi, Paul D.
  • Workneh, Fekede
  • Rush, Charles M.

Abstract

While many studies on zebra chip (ZC) disease in potatoes have focused on the epidemiology of the disease and the characterization of infected potato plants, this study quantifies the impact of ZC disease on crop response and investigates the relationship between irrigation level and ZC disease severity. In this two-year study chipping potatoes were planted under a variable rate irrigation center pivot sprinkler using a split-plot design with a 2 × 3 factorial combination of ZC disease level (diseased and non-diseased) and irrigation levels of 100%, 80% and 60% replenishment of soil water depletion to field capacity, designated I100, I80 and I60. Crop response of tuber yield, evapotranspiration (ETc), crop water productivity (CWP) and irrigation water productivity (IWP) from ZC diseased plots were compared with non-diseased (control) plots. Tuber yield and CWP in the infested plots were significantly reduced by at least 58% in 2018 and by 21% in 2019 as compared with results in the control plots. Year significantly affected crop response in the control plots, however, crop response in the ZC diseased plots was devastative to potatoes from year to year. There was no interaction between irrigation level and ZC disease occurrence. In both years, stomatal conductance measurements in ZC diseased plants were reduced 35 and 44 days after infection as compared with control plants. Since irrigation did not lessen the severity of ZC disease, as soon as diseased plants are identified within a field, withholding irrigation to the affected areas could improve IWP at the field level. Future studies should consider the use of thermal imaging or spectral reflectance of the plant canopy for spatiotemporal detection of ZC disease as early as possible in the growing season.

Suggested Citation

  • O’Shaughnessy, Susan A. & Rho, Hyungmin & Colaizzi, Paul D. & Workneh, Fekede & Rush, Charles M., 2022. "Impact of zebra chip disease and irrigation levels on potato production," Agricultural Water Management, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422001949
    DOI: 10.1016/j.agwat.2022.107647
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422001949
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107647?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramírez, David A. & Yactayo, Wendy & Rens, Libby R. & Rolando, José L. & Palacios, Susan & De Mendiburu, Felipe & Mares, Víctor & Barreda, Carolina & Loayza, Hildo & Monneveux, Philippe & Zotarelli, L, 2016. "Defining biological thresholds associated to plant water status for monitoring water restriction effects: Stomatal conductance and photosynthesis recovery as key indicators in potato," Agricultural Water Management, Elsevier, vol. 177(C), pages 369-378.
    2. Wagg, Cameron & Hann, Sheldon & Kupriyanovich, Yulia & Li, Sheng, 2021. "Timing of short period water stress determines potato plant growth, yield and tuber quality," Agricultural Water Management, Elsevier, vol. 247(C).
    3. Ierna, Anita & Mauromicale, Giovanni, 2012. "Tuber yield and irrigation water productivity in early potatoes as affected by irrigation regime," Agricultural Water Management, Elsevier, vol. 115(C), pages 276-284.
    4. Yost, Jenifer L. & Huang, Jingyi & Hartemink, Alfred E., 2019. "Spatial-temporal analysis of soil water storage and deep drainage under irrigated potatoes in the Central Sands of Wisconsin, USA," Agricultural Water Management, Elsevier, vol. 217(C), pages 226-235.
    5. Kashyap, P. S. & Panda, R. K., 2003. "Effect of irrigation scheduling on potato crop parameters under water stressed conditions," Agricultural Water Management, Elsevier, vol. 59(1), pages 49-66, March.
    6. Onder, Sermet & Caliskan, Mehmet Emin & Onder, Derya & Caliskan, Sevgi, 2005. "Different irrigation methods and water stress effects on potato yield and yield components," Agricultural Water Management, Elsevier, vol. 73(1), pages 73-86, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Minghui & Wang, Haidong & Zhang, Fucang & Wang, Xiukang & Liao, Zhenqi & Zhang, Shaohui & Yang, Qiliang & Fan, Junliang, 2023. "Effects of irrigation and fertilization regimes on tuber yield, water-nutrient uptake and productivity of potato under drip fertigation in sandy regions of northern China," Agricultural Water Management, Elsevier, vol. 287(C).
    2. Ierna, Anita & Mauromicale, Giovanni, 2018. "Potato growth, yield and water productivity response to different irrigation and fertilization regimes," Agricultural Water Management, Elsevier, vol. 201(C), pages 21-26.
    3. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    4. Xing, Yingying & Zhang, Teng & Jiang, Wenting & Li, Peng & Shi, Peng & Xu, Guoce & Cheng, Shengdong & Cheng, Yuting & Fan, Zhang & Wang, Xiukang, 2022. "Effects of irrigation and fertilization on different potato varieties growth, yield and resources use efficiency in the Northwest China," Agricultural Water Management, Elsevier, vol. 261(C).
    5. Karam, F. & Amacha, N. & Fahed, S. & EL Asmar, T. & Domínguez, A., 2014. "Response of potato to full and deficit irrigation under semiarid climate: Agronomic and economic implications," Agricultural Water Management, Elsevier, vol. 142(C), pages 144-151.
    6. Ierna, Anita & Pandino, Gaetano & Lombardo, Sara & Mauromicale, Giovanni, 2011. "Tuber yield, water and fertilizer productivity in early potato as affected by a combination of irrigation and fertilization," Agricultural Water Management, Elsevier, vol. 101(1), pages 35-41.
    7. Gitari, Harun I. & Gachene, Charles K.K. & Karanja, Nancy N. & Kamau, Solomon & Nyawade, Shadrack & Sharma, Kalpana & Schulte-Geldermann, Elmar, 2018. "Optimizing yield and economic returns of rain-fed potato (Solanum tuberosum L.) through water conservation under potato-legume intercropping systems," Agricultural Water Management, Elsevier, vol. 208(C), pages 59-66.
    8. Zhang, Shaohui & Fan, Junliang & Zhang, Fucang & Wang, Haidong & Yang, Ling & Sun, Xin & Cheng, Minghui & Cheng, Houliang & Li, Zhijun, 2022. "Optimizing irrigation amount and potassium rate to simultaneously improve tuber yield, water productivity and plant potassium accumulation of drip-fertigated potato in northwest China," Agricultural Water Management, Elsevier, vol. 264(C).
    9. Ierna, Anita & Mauromicale, Giovanni, 2012. "Tuber yield and irrigation water productivity in early potatoes as affected by irrigation regime," Agricultural Water Management, Elsevier, vol. 115(C), pages 276-284.
    10. Wang, Feng-Xin & Kang, Yaohu & Liu, Shi-Ping & Hou, Xiao-Yan, 2007. "Effects of soil matric potential on potato growth under drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 34-42, March.
    11. Sheng Li & Yulia Kupriyanovich & Cameron Wagg & Fangzhou Zheng & Sheldon Hann, 2023. "Water Deficit Duration Affects Potato Plant Growth, Yield and Tuber Quality," Agriculture, MDPI, vol. 13(10), pages 1-16, October.
    12. Sarker, Khokan Kumer & Hossain, Akbar & Timsina, Jagadish & Biswas, Sujit Kumar & Kundu, Bimal Chandra & Barman, Alak & Murad, Khandakar Faisal Ibn & Akter, Farzana, 2019. "Yield and quality of potato tuber and its water productivity are influenced by alternate furrow irrigation in a raised bed system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    13. Camargo, D.C. & Montoya, F. & Córcoles, J.I. & Ortega, J.F., 2015. "Modeling the impacts of irrigation treatments on potato growth and development," Agricultural Water Management, Elsevier, vol. 150(C), pages 119-128.
    14. Montoya, F. & Camargo, D. & Ortega, J.F. & Córcoles, J.I. & Domínguez, A., 2016. "Evaluation of Aquacrop model for a potato crop under different irrigation conditions," Agricultural Water Management, Elsevier, vol. 164(P2), pages 267-280.
    15. Patel, Neelam & Rajput, T.B.S., 2007. "Effect of drip tape placement depth and irrigation level on yield of potato," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 209-223, March.
    16. Paredes, Paula & D’Agostino, Daniela & Assif, Mahdi & Todorovic, Mladen & Pereira, Luis S., 2018. "Assessing potato transpiration, yield and water productivity under various water regimes and planting dates using the FAO dual Kc approach," Agricultural Water Management, Elsevier, vol. 195(C), pages 11-24.
    17. Badr, M.A. & El-Tohamy, W.A. & Zaghloul, A.M., 2012. "Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region," Agricultural Water Management, Elsevier, vol. 110(C), pages 9-15.
    18. Abdul Waheed & Chuang Li & Murad Muhammad & Mushtaq Ahmad & Khalid Ali Khan & Hamed A. Ghramh & Zhongwei Wang & Daoyuan Zhang, 2023. "Sustainable Potato Growth under Straw Mulching Practices," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    19. César Salazar & Andrés Acuña‐Duarte & José Maria Gil, 2023. "Drought shocks and price adjustments in local food markets in Chile: Do product quality and marketing channel matter?," Agricultural Economics, International Association of Agricultural Economists, vol. 54(3), pages 349-363, May.
    20. Zhou, Zhenjiang & Plauborg, Finn & Parsons, David & Andersen, Mathias Neumann, 2018. "Potato canopy growth, yield and soil water dynamics under different irrigation systems," Agricultural Water Management, Elsevier, vol. 202(C), pages 9-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422001949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.