IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v246y2021ics0378377420322319.html
   My bibliography  Save this article

Multi-scale modeling for irrigation water and cropland resources allocation considering uncertainties in water supply and demand

Author

Listed:
  • Li, Mo
  • Sun, Hao
  • Liu, Dong
  • Singh, Vijay P.
  • Fu, Qiang

Abstract

Irrigated agriculture is the dominant user of world’s fresh water which feeds the world’s growing population. Conflicts between stakeholders; incompatibility of economic, social, and environmental development; and uncertainties in water supply and demand restrict the sustainable development of irrigated agriculture. This study developed a multi-scale multi-objective programming model for simultaneous optimal allocation of irrigation water and cropland to balance conflicts between farmers’ income and sustainable development of irrigation districts (reflected in economic, social, and environmental aspects). Consideration of the joint uncertainties of water supply and demand helps provide practical and indicative schemes for agricultural water and land allocation. The developed model was applied to a real case study in an irrigation district in northeast China. Farmers’ income, net economic benefit, resources allocation equity, and global warming potential were coordinated by optimally allocating limited water and cropland resources to different crops in different subareas under different combinational scenarios of water supply and demand. The performance of the model was evaluated, based on the concept of “adaptability” which can help realize the degree of ability of the irrigated agricultural system to adapt to changing environment. The developed model can help plan irrigation water and cropland resources in a sustainable way, and can be a reference for similar irrigation systems worldwide.

Suggested Citation

  • Li, Mo & Sun, Hao & Liu, Dong & Singh, Vijay P. & Fu, Qiang, 2021. "Multi-scale modeling for irrigation water and cropland resources allocation considering uncertainties in water supply and demand," Agricultural Water Management, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:agiwat:v:246:y:2021:i:c:s0378377420322319
    DOI: 10.1016/j.agwat.2020.106687
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420322319
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106687?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krishna Malakar & Trupti Mishra & Anand Patwardhan, 2018. "Inequality in water supply in India: an assessment using the Gini and Theil indices," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(2), pages 841-864, April.
    2. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2016. "Optimizing regional irrigation water use by integrating a two-level optimization model and an agro-hydrological model," Agricultural Water Management, Elsevier, vol. 178(C), pages 76-88.
    3. Xiao, Guangmin & Zhao, Zichao & Liang, Long & Meng, Fanqiao & Wu, Wenliang & Guo, Yanbin, 2019. "Improving nitrogen and water use efficiency in a wheat-maize rotation system in the North China Plain using optimized farming practices," Agricultural Water Management, Elsevier, vol. 212(C), pages 172-180.
    4. Gong, Xinghui & Zhang, Hongbo & Ren, Chongfeng & Sun, Dongyong & Yang, Jiantao, 2020. "Optimization allocation of irrigation water resources based on crop water requirement under considering effective precipitation and uncertainty," Agricultural Water Management, Elsevier, vol. 239(C).
    5. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Gong, Xinglong, 2020. "Risk-based agricultural water allocation under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 233(C).
    6. Elleuch, Mohamed Ali & Anane, Makram & Euchi, Jalel & Frikha, Ahmed, 2019. "Hybrid fuzzy multi-criteria decision making to solve the irrigation water allocation problem in the Tunisian case," Agricultural Systems, Elsevier, vol. 176(C).
    7. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Li, Tianxiao & Zhou, Yan, 2020. "Managing agricultural water and land resources with tradeoff between economic, environmental, and social considerations: A multi-objective non-linear optimization model under uncertainty," Agricultural Systems, Elsevier, vol. 178(C).
    8. Linker, Raphael, 2020. "Unified framework for model-based optimal allocation of crop areas and water," Agricultural Water Management, Elsevier, vol. 228(C).
    9. Shangguan, Zhouping & Shao, Mingan & Horton, Robert & Lei, Tingwu & Qin, Lin & Ma, Jianqing, 2002. "A model for regional optimal allocation of irrigation water resources under deficit irrigation and its applications," Agricultural Water Management, Elsevier, vol. 52(2), pages 139-154, January.
    10. Jiang, Song & Meng, Jijun & Zhu, Likai, 2020. "Spatial and temporal analyses of potential land use conflict under the constraints of water resources in the middle reaches of the Heihe River," Land Use Policy, Elsevier, vol. 97(C).
    11. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Li, Jiang, 2020. "Optimization of sustainable bioenergy production considering energy-food-water-land nexus and livestock manure under uncertainty," Agricultural Systems, Elsevier, vol. 184(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El Ansari, Loubna & Chenoune, Roza & Yigezu, Yigezu A. & Komarek, Adam M. & Gary, Christian & Belhouchette, Hatem, 2023. "Intensification options in cereal-legume production systems generate trade-offs between sustainability pillars for farm households in northern Morocco," Agricultural Systems, Elsevier, vol. 212(C).
    2. Ran Zhu & Yiping Fang, 2022. "Application of a Water Supply-Demand Balance Model to Set Priorities for Improvements in Water Supply Systems: A Case Study from the Koshi River Basin, Nepal," IJERPH, MDPI, vol. 19(3), pages 1-16, January.
    3. Zhang, Shuo & Kang, Yan & Gao, Xuan & Chen, Peiru & Cheng, Xiao & Song, Songbai & Li, Lingjie, 2023. "Optimal reservoir operation and risk analysis of agriculture water supply considering encounter uncertainty of precipitation in irrigation area and runoff from upstream," Agricultural Water Management, Elsevier, vol. 277(C).
    4. Jain, Sonal & Ramesh, Dharavath & Trivedi, Munesh C. & Edla, Damodar Reddy, 2023. "Evaluation of metaheuristic optimization algorithms for optimal allocation of surface water and groundwater resources for crop production," Agricultural Water Management, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Mo & Cao, Xiaoxu & Liu, Dong & Fu, Qiang & Li, Tianxiao & Shang, Ruochen, 2022. "Sustainable management of agricultural water and land resources under changing climate and socio-economic conditions: A multi-dimensional optimization approach," Agricultural Water Management, Elsevier, vol. 259(C).
    2. Min Chen & Songhao Shang & Wei Li, 2020. "Integrated Modeling Approach for Sustainable Land-Water-Food Nexus Management," Agriculture, MDPI, vol. 10(4), pages 1-19, April.
    3. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Li, Jiang, 2020. "Optimization of sustainable bioenergy production considering energy-food-water-land nexus and livestock manure under uncertainty," Agricultural Systems, Elsevier, vol. 184(C).
    4. Yue, Qiong & Guo, Ping, 2021. "Managing agricultural water-energy-food-environment nexus considering water footprint and carbon footprint under uncertainty," Agricultural Water Management, Elsevier, vol. 252(C).
    5. Mandal, Uday & Dhar, Anirban & Panda, Sudhindra N., 2021. "Enhancement of sustainable agricultural production system by integrated natural resources management framework under climatic and operational uncertainty," Agricultural Water Management, Elsevier, vol. 252(C).
    6. Zhang, Fan & Guo, Shanshan & Liu, Xiao & Wang, Youzhi & Engel, Bernard A. & Guo, Ping, 2020. "Towards sustainable water management in an arid agricultural region: A multi-level multi-objective stochastic approach," Agricultural Systems, Elsevier, vol. 182(C).
    7. Gong, Xinghui & Zhang, Hongbo & Ren, Chongfeng & Sun, Dongyong & Yang, Jiantao, 2020. "Optimization allocation of irrigation water resources based on crop water requirement under considering effective precipitation and uncertainty," Agricultural Water Management, Elsevier, vol. 239(C).
    8. Li, Jiang & Shang, Songhao & Jiang, Hongzhe & Song, Jian & Rahman, Khalil Ur & Adeloye, Adebayo J., 2021. "Simulation-based optimization for spatiotemporal allocation of irrigation water in arid region," Agricultural Water Management, Elsevier, vol. 254(C).
    9. Zhang, Zepeng & Wang, Qingzheng & Guan, Qingyu & Xiao, Xiong & Mi, Jimin & Lv, Songjian, 2023. "Research on the optimal allocation of agricultural water and soil resources in the Heihe River Basin based on SWAT and intelligent optimization," Agricultural Water Management, Elsevier, vol. 279(C).
    10. Ajay Singh, 2022. "Better Water and Land Allocation for Long-term Agricultural Sustainability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3505-3522, August.
    11. Li, Shuoyang & Yang, Guiyu & Wang, Hao & Song, Xiufang & Chang, Cui & Du, Jie & Gao, Danyang, 2023. "A spatial-temporal optimal allocation method of irrigation water resources considering groundwater level," Agricultural Water Management, Elsevier, vol. 275(C).
    12. Madan K. Jha & Richard C. Peralta & Sasmita Sahoo, 2020. "Simulation-Optimization for Conjunctive Water Resources Management and Optimal Crop Planning in Kushabhadra-Bhargavi River Delta of Eastern India," IJERPH, MDPI, vol. 17(10), pages 1-20, May.
    13. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    14. Xu, Xianghui & Chen, Yingshan & Zhou, Yan & Liu, Wuyuan & Zhang, Xinrui & Li, Mo, 2023. "Sustainable management of agricultural water rights trading under uncertainty: An optimization-evaluation framework," Agricultural Water Management, Elsevier, vol. 280(C).
    15. Bonfante, A. & Monaco, E. & Manna, P. & De Mascellis, R. & Basile, A. & Buonanno, M. & Cantilena, G. & Esposito, A. & Tedeschi, A. & De Michele, C. & Belfiore, O. & Catapano, I. & Ludeno, G. & Salinas, 2019. "LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study," Agricultural Systems, Elsevier, vol. 176(C).
    16. Yi Ge & Guangfei Yang & Yi Chen & Wen Dou, 2019. "Examining Social Vulnerability and Inequality: A Joint Analysis through a Connectivity Lens in the Urban Agglomerations of China," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    17. Parkes, Martin & Jian, Wang & Knowles, Rupert, 2005. "Peak crop coefficient values for Shaanxi, North-west China," Agricultural Water Management, Elsevier, vol. 73(2), pages 149-168, May.
    18. Jorge A. Garcia & Angelos Alamanos, 2022. "Integrated modelling approaches for sustainable agri-economic growth and environmental improvement: Examples from Canada, Greece, and Ireland," Papers 2208.09087, arXiv.org.
    19. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.
    20. Shunqian Gao & Liu Yang & Hongzan Jiao, 2022. "Changes in and Patterns of the Tradeoffs and Synergies of Production-Living-Ecological Space: A Case Study of Longli County, Guizhou Province, China," Sustainability, MDPI, vol. 14(14), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:246:y:2021:i:c:s0378377420322319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.