IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v244y2021ics0378377420321211.html
   My bibliography  Save this article

Simulating the effects of agricultural production practices on water conservation and crop yields using an improved SWAT model in the Texas High Plains, USA

Author

Listed:
  • Chen, Yong
  • Marek, Gary W.
  • Marek, Thomas H.
  • Porter, Dana O.
  • Brauer, David K.
  • Srinivasan, Raghavan

Abstract

A calibrated SWAT model equipped with an improved auto-irrigation function was used to evaluate the impacts of agricultural production practices on water balances and crop yields of corn, sorghum, and winter wheat for the Palo Duro watershed located in the Texas High Plains (THP). Fourteen scenarios were simulated including alternative irrigation application depths of 12.7 mm and 38.1 mm for irrigated corn, sorghum, and wheat and with different planting dates for irrigated corn, sorghum, wheat, and dryland wheat. Results indicated the greater irrigation depth (38.1 mm) led to reductions in seasonal irrigation requirements and crop evapotranspiration (ETc) when compared to the baseline scenarios using an irrigation depth of 25.4 mm for corn, sorghum, and wheat. However, soil water content, surface runoff, and percolation were increased. The opposite was observed for simulations of the same hydrologic variables but with an irrigation depth of 12.7 mm. Crop yields associated with the alternative irrigation depths were similar to those achieved with the baseline. Delayed planting of corn and sorghum resulted in the decrease of all the studied hydrologic parameters relative to the baseline. By contrast, the early planting scenarios showed the increase in those variables generally. Simulated corn yields were relatively stable, but a 3.7% reduction in irrigated sorghum yield was found with late planting. Notably, the early planting of wheat resulted in a clear increase in both irrigated and dryland yields of 11.2% and 13.5%, respectively. However, the yields of irrigated and dryland wheat were reduced by 28.8% and 2.7%, respectively, for the late planting. These findings suggest the greater irrigation application depth is promising for maintaining crop yields and reducing groundwater use from the Ogallala Aquifer. Also, the late planting of corn may benefit water conservation. Nevertheless, the early planting of wheat might be warranted to enhance yield in the THP.

Suggested Citation

  • Chen, Yong & Marek, Gary W. & Marek, Thomas H. & Porter, Dana O. & Brauer, David K. & Srinivasan, Raghavan, 2021. "Simulating the effects of agricultural production practices on water conservation and crop yields using an improved SWAT model in the Texas High Plains, USA," Agricultural Water Management, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:agiwat:v:244:y:2021:i:c:s0378377420321211
    DOI: 10.1016/j.agwat.2020.106574
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420321211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106574?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hao, Baozhen & Xue, Qingwu & Marek, Thomas H. & Jessup, Kirk E. & Hou, Xiaobo & Xu, Wenwei & Bynum, Edsel D. & Bean, Brent W., 2015. "Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains," Agricultural Water Management, Elsevier, vol. 155(C), pages 11-21.
    2. Wu, Di & Cui, Yuanlai & Wang, Yitong & Chen, Manyu & Luo, Yufeng & Zhang, Lei, 2019. "Reuse of return flows and its scale effect in irrigation systems based on modified SWAT model," Agricultural Water Management, Elsevier, vol. 213(C), pages 280-288.
    3. Himanshu, Sushil Kumar & Ale, Srinivasulu & Bordovsky, James & Darapuneni, Murali, 2019. "Evaluation of crop-growth-stage-based deficit irrigation strategies for cotton production in the Southern High Plains," Agricultural Water Management, Elsevier, vol. 225(C).
    4. Uniyal, Bhumika & Dietrich, Jörg, 2019. "Modifying Automatic Irrigation in SWAT for Plant Water Stress scheduling," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eini, Mohammad Reza & Salmani, Haniyeh & Piniewski, Mikołaj, 2023. "Comparison of process-based and statistical approaches for simulation and projections of rainfed crop yields," Agricultural Water Management, Elsevier, vol. 277(C).
    2. Himanshu, Sushil K. & Ale, Srinivasulu & Bell, Jourdan & Fan, Yubing & Samanta, Sayantan & Bordovsky, James P. & Gitz III, Dennis C. & Lascano, Robert J. & Brauer, David K., 2023. "Evaluation of growth-stage-based variable deficit irrigation strategies for cotton production in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 280(C).
    3. Čerkasova, Natalja & White, Michael & Arnold, Jeffrey & Bieger, Katrin & Allen, Peter & Gao, Jungang & Gambone, Marilyn & Meki, Manyowa & Kiniry, James & Gassman, Philip W., 2023. "Field scale SWAT+ modeling of corn and soybean yields for the contiguous United States: National Agroecosystem Model Development," Agricultural Systems, Elsevier, vol. 210(C).
    4. Derek Haskell & Joonghyeok Heo & Joonkyu Park & Chao Dong, 2022. "Hydrogeochemical Evaluation of Groundwater Quality Parameters for Ogallala Aquifer in the Southern High Plains Region, USA," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
    5. Nina Noreika & Tailin Li & Julie Winterova & Josef Krasa & Tomas Dostal, 2022. "The Effects of Agricultural Conservation Practices on the Small Water Cycle: From the Farm- to the Management-Scale," Land, MDPI, vol. 11(5), pages 1-16, May.
    6. Xuekai Chen & Guojian He & Xiaobo Liu & Bogen Li & Wenqi Peng & Fei Dong & Aiping Huang & Weijie Wang & Qiuyue Lian, 2021. "Sub-Watershed Parameter Transplantation Method for Non-Point Source Pollution Estimation in Complex Underlying Surface Environment," Land, MDPI, vol. 10(12), pages 1-25, December.
    7. Junchao Jiang & Leting Lyu & Yuechi Han & Caizhi Sun, 2021. "Effect of Climate Variability on Green and Blue Water Resources in a Temperate Monsoon Watershed, Northeastern China," Sustainability, MDPI, vol. 13(4), pages 1-13, February.
    8. Qinghua Guo & Wenliang Wu, 2023. "Application of Parameter Optimization Methods Based on Kalman Formula to the Soil—Crop System Model," IJERPH, MDPI, vol. 20(5), pages 1-16, March.
    9. Fan, Yunfei & He, Liuyue & Liu, Yi & Wang, Sufen, 2022. "Optimal cropping patterns can be conducive to sustainable irrigation: Evidence from the drylands of Northwest China," Agricultural Water Management, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Di & Cui, Yuanlai & Li, Dacheng & Chen, Manyu & Ye, Xugang & Fan, Guofu & Gong, Lanqiang, 2021. "Calculation framework for agricultural irrigation water consumption in multi-source irrigation systems," Agricultural Water Management, Elsevier, vol. 244(C).
    2. Stepanovic, Strahinja & Rudnick, Daran & Kruger, Greg, 2021. "Impact of maize hybrid selection on water productivity under deficit irrigation in semiarid western Nebraska," Agricultural Water Management, Elsevier, vol. 244(C).
    3. Singh, Sukhbir & Angadi, Sangamesh V. & Grover, Kulbhushan K. & Hilaire, Rolston St. & Begna, Sultan, 2016. "Effect of growth stage based irrigation on soil water extraction and water use efficiency of spring safflower cultivars," Agricultural Water Management, Elsevier, vol. 177(C), pages 432-439.
    4. Wang, Xiao-Ling & Duan, Pei-Ling & Yang, Shen-Jiao & Liu, Yu-Hua & Qi, Lin & Shi, Jiang & Li, Xue-Lin & Song, Peng & Zhang, Li-Xia, 2020. "Corn compensatory growth upon post-drought rewatering based on the effects of rhizosphere soil nitrification on cytokinin," Agricultural Water Management, Elsevier, vol. 241(C).
    5. Čerkasova, Natalja & White, Michael & Arnold, Jeffrey & Bieger, Katrin & Allen, Peter & Gao, Jungang & Gambone, Marilyn & Meki, Manyowa & Kiniry, James & Gassman, Philip W., 2023. "Field scale SWAT+ modeling of corn and soybean yields for the contiguous United States: National Agroecosystem Model Development," Agricultural Systems, Elsevier, vol. 210(C).
    6. Feng, Genxiang & Zhu, Chengli & Wu, Qingfeng & Wang, Ce & Zhang, Zhanyu & Mwiya, Richwell Mubita & Zhang, Li, 2021. "Evaluating the impacts of saline water irrigation on soil water-salt and summer maize yield in subsurface drainage condition using coupled HYDRUS and EPIC model," Agricultural Water Management, Elsevier, vol. 258(C).
    7. Katuwal, Krishna B. & Cho, Youngkoo & Singh, Sukhbir & Angadi, Sangamesh V. & Begna, Sultan & Stamm, Michael, 2020. "Soil water extraction pattern and water use efficiency of spring canola under growth-stage-based irrigation management," Agricultural Water Management, Elsevier, vol. 239(C).
    8. Bhattarai, Bishwoyog & Singh, Sukhbir & Angadi, Sangamesh V. & Begna, Sultan & Saini, Rupinder & Auld, Dick, 2020. "Spring safflower water use patterns in response to preseason and in-season irrigation applications," Agricultural Water Management, Elsevier, vol. 228(C).
    9. Hou, Chenli & Tian, Delong & Xu, Bing & Ren, Jie & Hao, Lei & Chen, Ning & Li, Xianyue, 2021. "Use of the stable oxygen isotope method to evaluate the difference in water consumption and utilization strategy between alfalfa and maize fields in an arid shallow groundwater area," Agricultural Water Management, Elsevier, vol. 256(C).
    10. Suat Irmak & Ali T. Mohammed & William Kranz & C.D. Yonts & Simon van Donk, 2020. "Irrigation-Yield Production Functions and Irrigation Water Use Efficiency Response of Drought-Tolerant and Non-Drought-Tolerant Maize Hybrids under Different Irrigation Levels, Population Densities, a," Sustainability, MDPI, vol. 12(1), pages 1-26, January.
    11. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Wang, Yanli & Li, Yuepeng & Sun, Xin & Yang, Ling & Zhang, Fucang, 2021. "Water productivity and seed cotton yield in response to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    12. Wen, Yeqiang & Shang, Songhao & Rahman, Khalil Ur & Xia, Yuhong & Ren, Dongyang, 2020. "A semi-distributed drainage model for monthly drainage water and salinity simulation in a large irrigation district in arid region," Agricultural Water Management, Elsevier, vol. 230(C).
    13. Zhang, Junxiao & Wang, Qianqing & Xia, Guimin & Wu, Qi & Chi, Daocai, 2021. "Continuous regulated deficit irrigation enhances peanut water use efficiency and drought resistance," Agricultural Water Management, Elsevier, vol. 255(C).
    14. Simons, G.W.H. & Bastiaanssen, W.G.M. & Cheema, M.J.M. & Ahmad, B. & Immerzeel, W.W., 2020. "A novel method to quantify consumed fractions and non-consumptive use of irrigation water: Application to the Indus Basin Irrigation System of Pakistan," Agricultural Water Management, Elsevier, vol. 236(C).
    15. Su, Zheng’e & Zhao, Jin & Marek, Thomas H. & Liu, Ke & Harrison, Matthew Tom & Xue, Qingwu, 2022. "Drought tolerant maize hybrids have higher yields and lower water use under drought conditions at a regional scale," Agricultural Water Management, Elsevier, vol. 274(C).
    16. Bhattarai, Bishwoyog & Singh, Sukhbir & West, Charles P. & Ritchie, Glen L. & Trostle, Calvin L., 2020. "Water Depletion Pattern and Water Use Efficiency of Forage Sorghum, Pearl millet, and Corn Under Water Limiting Condition," Agricultural Water Management, Elsevier, vol. 238(C).
    17. Fan, Yubing & Himanshu, Sushil K. & Ale, Srinivasulu & DeLaune, Paul B. & Zhang, Tian & Park, Seong C. & Colaizzi, Paul D. & Evett, Steven R. & Baumhardt, R. Louis, 2022. "The synergy between water conservation and economic profitability of adopting alternative irrigation systems for cotton production in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 262(C).
    18. Huang, Yajie & Ma, Yibing & Zhang, Shiwen & Li, Zhen & Huang, Yuanfang, 2021. "Optimum allocation of salt discharge areas in land consolidation for irrigation districts by SahysMod," Agricultural Water Management, Elsevier, vol. 256(C).
    19. Zhang, Xiying & Qin, Wenli & Chen, Suying & Shao, Liwei & Sun, Hongyong, 2017. "Responses of yield and WUE of winter wheat to water stress during the past three decades—A case study in the North China Plain," Agricultural Water Management, Elsevier, vol. 179(C), pages 47-54.
    20. Brar, Harjeet Singh & Singh, Pritpal, 2022. "Pre-and post-sowing irrigation scheduling impacts on crop phenology and water productivity of cotton (Gossypium hirsutum L.) in sub-tropical north-western India," Agricultural Water Management, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:244:y:2021:i:c:s0378377420321211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.