IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v243y2021ics0378377420306181.html
   My bibliography  Save this article

Rapid assessment of climate risks for irrigated agriculture in two river basins in the Aral Sea Basin

Author

Listed:
  • Lobanova, Anastasia
  • Didovets, Iulii
  • Menz, Christoph
  • Umirbekov, Atabek
  • Babagalieva, Zhanna
  • Hattermann, Fred
  • Krysanova, Valentina

Abstract

Understanding of future climate change impacts and successful planning of adaptation measures are of vital importance for Central Asia given the region's economic vulnerability, dependence on scarce water resources, and observed above global average warming rates. This paper analyses how impacts of climate change on the hydrological regimes and temperature patterns could affect the irrigated agricultural production in two case study areas, the Aspara and Isfara river basins. The methodology applied is based on analysis of temperature indicators and current cropping calendars in target locations combined with hydrological simulations by the process-based Soil and Water Integrated Model (SWIM) of the two river basins. The selected climate change projections comprise the moderate and high emissions scenarios - RCP4.5 and RCP8.5. The results reveal that climate change will create unfavourable conditions for irrigated spring crops, due to decrease of discharge during the vegetation period. On the other hand, the projected shift of peak discharge to an earlier date offers benefits for irrigated winter cereals, providing more water for irrigation in spring. Results suggest that, there is an opportunity to adapt the irrigated agricultural production in the selected regions by fitting the cropping calendars to changing vegetation periods and to the timing of peak discharges.

Suggested Citation

  • Lobanova, Anastasia & Didovets, Iulii & Menz, Christoph & Umirbekov, Atabek & Babagalieva, Zhanna & Hattermann, Fred & Krysanova, Valentina, 2021. "Rapid assessment of climate risks for irrigated agriculture in two river basins in the Aral Sea Basin," Agricultural Water Management, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377420306181
    DOI: 10.1016/j.agwat.2020.106381
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420306181
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106381?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher White & Trevor Tanton & David Rycroft, 2014. "The Impact of Climate Change on the Water Resources of the Amu Darya Basin in Central Asia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5267-5281, December.
    2. Shaochun Huang & Valentina Krysanova & Jianqing Zhai & Buda Su, 2015. "Impact of Intensive Irrigation Activities on River Discharge Under Agricultural Scenarios in the Semi-Arid Aksu River Basin, Northwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 945-959, February.
    3. Mariya Aleksandrova & Animesh K. Gain & Carlo Giupponi, 2016. "Assessing agricultural systems vulnerability to climate change to inform adaptation planning: an application in Khorezm, Uzbekistan," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(8), pages 1263-1287, December.
    4. Annina Sorg & Tobias Bolch & Markus Stoffel & Olga Solomina & Martin Beniston, 2012. "Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)," Nature Climate Change, Nature, vol. 2(10), pages 725-731, October.
    5. Galina, Stulina & Georgy, Solodkiy & Odilbek, Eshtchanov, 2019. "Estimation of Crop Water Requirements in Irrigated Land of the Khorezm Oasis in the Context of Climate Change," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 8(1).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anuarbek Kakabayev & Baurzhan Yessenzholov & Abilzhan Khussainov & Javier Rodrigo-Ilarri & María-Elena Rodrigo-Clavero & Gulmira Kyzdarbekova & Gulzhan Dankina, 2023. "The Impact of Climate Change on the Water Systems of the Yesil River Basin in Northern Kazakhstan," Sustainability, MDPI, vol. 15(22), pages 1-18, November.
    2. Ruan, Hongwei & Yu, Jingjie & Wang, Ping & Hao, Lingang & Wang, Zhenlong, 2023. "Relieving water stress by optimizing crop structure is a practicable approach in arid transboundary rivers of Central Asia," Agricultural Water Management, Elsevier, vol. 275(C).
    3. Didovets, Iulii & Lobanova, Anastasia & Krysanova, Valentina & Menz, Christoph & Babagalieva, Zhanna & Nurbatsina, Aliya & Gavrilenko, Nadejda & Khamidov, Vohid & Umirbekov, Atabek & Qodirov, Sobir & , 2021. "Central Asian rivers under climate change: Impacts assessment in eight representative catchments," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 34.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanlu Liu & Lulu Liu & Jiangbo Gao, 2020. "Adapting to climate change: gaps and strategies for Central Asia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(8), pages 1439-1459, December.
    2. Ali Sardar Shahraki & Javad Shahraki & Seyed Arman Hashemi Monfared, 2021. "An integrated model for economic assessment of environmental scenarios for dust stabilization and sustainable flora–fauna ecosystem in international Hamoun wetland," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 947-967, January.
    3. Xiaoyan Wang & Tao Yang & Chong-Yu Xu & Lihua Xiong & Pengfei Shi & Zhenya Li, 2020. "The response of runoff components and glacier mass balance to climate change for a glaciated high-mountainous catchment in the Tianshan Mountains," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1239-1258, November.
    4. Deg-Hyo Bae & Toshio Koike & Jehangir Awan & Moon-Hwan Lee & Kyung-Hwan Sohn, 2015. "Climate Change Impact Assessment on Water Resources and Susceptible Zones Identification in the Asian Monsoon Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5377-5393, November.
    5. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.
    6. Li, Zhi & Fang, Gonghuan & Chen, Yaning & Duan, Weili & Mukanov, Yerbolat, 2020. "Agricultural water demands in Central Asia under 1.5 °C and 2.0 °C global warming," Agricultural Water Management, Elsevier, vol. 231(C).
    7. Animesh Gain & Vahid Mojtahed & Claudio Biscaro & Stefano Balbi & Carlo Giupponi, 2015. "An integrated approach of flood risk assessment in the eastern part of Dhaka City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1499-1530, December.
    8. Liu, Minghuan & Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2018. "Long-term groundwater dynamics affected by intense agricultural activities in oasis areas of arid inland river basins, Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 37-52.
    9. Shumin Han & Qiuli Hu & Yonghui Yang & Jiusheng Wang & Ping Wang & Quan Wang, 2015. "Characteristics and Driving Factors of Drainage Water in Irrigation Districts in Arid Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5323-5337, November.
    10. Qun Liu & Zhaoping Yang & Cuirong Wang & Fang Han, 2019. "Temporal-Spatial Variations and Influencing Factor of Land Use Change in Xinjiang, Central Asia, from 1995 to 2015," Sustainability, MDPI, vol. 11(3), pages 1-14, January.
    11. Yihao Zhang & Jianzhong Yan & Xian Cheng & Xinjun He, 2021. "Wetland Changes and Their Relation to Climate Change in the Pumqu Basin, Tibetan Plateau," IJERPH, MDPI, vol. 18(5), pages 1-24, March.
    12. Weibing Du & Weiqian Ji & Linjuan Xu & Shuangting Wang, 2020. "Deformation Time Series and Driving-Force Analysis of Glaciers in the Eastern Tienshan Mountains Using the SBAS InSAR Method," IJERPH, MDPI, vol. 17(8), pages 1-18, April.
    13. Hanbeen Kim & Gabriele Villarini, 2024. "Higher emissions scenarios lead to more extreme flooding in the United States," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Ruan, Hongwei & Yu, Jingjie & Wang, Ping & Hao, Lingang & Wang, Zhenlong, 2023. "Relieving water stress by optimizing crop structure is a practicable approach in arid transboundary rivers of Central Asia," Agricultural Water Management, Elsevier, vol. 275(C).
    15. Didovets, Iulii & Lobanova, Anastasia & Krysanova, Valentina & Menz, Christoph & Babagalieva, Zhanna & Nurbatsina, Aliya & Gavrilenko, Nadejda & Khamidov, Vohid & Umirbekov, Atabek & Qodirov, Sobir & , 2021. "Central Asian rivers under climate change: Impacts assessment in eight representative catchments," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 34.
    16. Haoyu Jin & Qin Ju & Zhongbo Yu & Jie Hao & Huanghe Gu & Henan Gu & Wei Li, 2019. "Simulation of snowmelt runoff and sensitivity analysis in the Nyang River Basin, southeastern Qinghai-Tibetan Plateau, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 931-950, November.
    17. Huili He & Rafiq Hamdi & Geping Luo & Peng Cai & Xiuliang Yuan & Miao Zhang & Piet Termonia & Philippe Maeyer & Alishir Kurban, 2022. "The summer cooling effect under the projected restoration of Aral Sea in Central Asia," Climatic Change, Springer, vol. 174(1), pages 1-21, September.
    18. Haijun Deng & N. C. Pepin & Qun Liu & Yaning Chen, 2018. "Understanding the spatial differences in terrestrial water storage variations in the Tibetan Plateau from 2002 to 2016," Climatic Change, Springer, vol. 151(3), pages 379-393, December.
    19. Steven G. Pueppke & Margulan K. Iklasov & Volker Beckmann & Sabir T. Nurtazin & Niels Thevs & Sayat Sharakhmetov & Buho Hoshino, 2018. "Challenges for Sustainable Use of the Fish Resources from Lake Balkhash, a Fragile Lake in an Arid Ecosystem," Sustainability, MDPI, vol. 10(4), pages 1-15, April.
    20. Shan Zou & Abuduwaili Jilili & Weili Duan & Philippe De Maeyer & Tim Van de Voorde, 2019. "Human and Natural Impacts on the Water Resources in the Syr Darya River Basin, Central Asia," Sustainability, MDPI, vol. 11(11), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377420306181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.