IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v231y2020ics0378377418319656.html
   My bibliography  Save this article

Analytical approach extending the Granier method to radial sap flow patterns

Author

Listed:
  • Baiamonte, Giorgio
  • Motisi, Antonio

Abstract

The Granier thermal dissipation (TD) method is probably the most applied method to compute the transpiration flux of trees, due to its simplicity and effective compromise between theory and data availability. Starting from the heat transfer equations at the basis of Granier’s method, the objective of this paper is to derive an analytical solution for the transpiration flux to extend the sap flow equations to the radial domain. We adopted a flexible approach to cope with the differences in radial sapflow density (SFD) profile shapes that are known to occur in relation to wood anatomy (diffuse porous vs. ring- or non-porous xylem). With this purpose, we investigated the robustness of the equations developed on some experimental and reliable radial SFD measurements available in literature to test the influence of considering or not considering the active zone close to the cambium, where most of the species-specific differences are likely to be observed. Moreover, the parameters derived by the extended formulation, are interpreted as descriptive of species-specific radial sap flow patterns. The reliability of the suggested procedure was checked against several experimental SFD profiles from literature: i) monotonically increasing SFD from the centre of the stem towards the cambium, ii) increasing SFD from the centre of the stem and then constant SFD towards the cambium, and iii) increasing SFD from the centre of the stem to a maximum SFD and then decreasing towards the cambium. Results show that according to the suggested procedure, an increasing number of parameters depending on the SFD profile complexity are required to synthetically describe the transpiration flux of different tree species. For the simplest case of monotonically increasing SFD, which could be assumed as standard under conditions of a diffuse porous tree structure, only two parameters with a clear physical meaning are required.

Suggested Citation

  • Baiamonte, Giorgio & Motisi, Antonio, 2020. "Analytical approach extending the Granier method to radial sap flow patterns," Agricultural Water Management, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:agiwat:v:231:y:2020:i:c:s0378377418319656
    DOI: 10.1016/j.agwat.2019.105988
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418319656
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105988?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geoffrey B. West & James H. Brown & Brian J. Enquist, 1999. "A general model for the structure and allometry of plant vascular systems," Nature, Nature, vol. 400(6745), pages 664-667, August.
    2. Fernandez, J. E. & Palomo, M. J. & Diaz-Espejo, A. & Clothier, B. E. & Green, S. R. & Giron, I. F. & Moreno, F., 2001. "Heat-pulse measurements of sap flow in olives for automating irrigation: tests, root flow and diagnostics of water stress," Agricultural Water Management, Elsevier, vol. 51(2), pages 99-123, October.
    3. Cao, Xiaoqing & Yang, Peiling & Engel, Bernard A. & Li, Pingfeng, 2018. "The effects of rainfall and irrigation on cherry root water uptake under drip irrigation," Agricultural Water Management, Elsevier, vol. 197(C), pages 9-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Junliang & Zheng, Jing & Wu, Lifeng & Zhang, Fucang, 2021. "Estimation of daily maize transpiration using support vector machines, extreme gradient boosting, artificial and deep neural networks models," Agricultural Water Management, Elsevier, vol. 245(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas, E. & Torrecillas, A. & Ortuno, M.F. & Domingo, R. & Alarcon, J.J., 2005. "Evaluation of transpiration in adult apricot trees from sap flow measurements," Agricultural Water Management, Elsevier, vol. 72(2), pages 131-145, March.
    2. Hongying Li & Zhongwen Huang & Junyi Gai & Song Wu & Yanru Zeng & Qin Li & Rongling Wu, 2007. "A Conceptual Framework for Mapping Quantitative Trait Loci Regulating Ontogenetic Allometry," PLOS ONE, Public Library of Science, vol. 2(11), pages 1-10, November.
    3. Greven, Marc & Neal, Sue & Green, Steve & Dichio, Bartolomeo & Clothier, Brent, 2009. "The effects of drought on the water use, fruit development and oil yield from young olive trees," Agricultural Water Management, Elsevier, vol. 96(11), pages 1525-1531, November.
    4. Siakou, M. & Bruggeman, A. & Eliades, M. & Zoumides, C. & Djuma, H. & Kyriacou, M.C. & Emmanouilidou, M.G. & Spyros, A. & Manolopoulou, E. & Moriana, A., 2021. "Effects of deficit irrigation on ‘Koroneiki’ olive tree growth, physiology and olive oil quality at different harvest dates," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Martínez-Cob, A. & Faci, J.M., 2010. "Evapotranspiration of an hedge-pruned olive orchard in a semiarid area of NE Spain," Agricultural Water Management, Elsevier, vol. 97(3), pages 410-418, March.
    6. Eglin, Thomas & Francois, Christophe & Michelot, Alice & Delpierre, Nicolas & Damesin, Claire, 2010. "Linking intra-seasonal variations in climate and tree-ring δ13C: A functional modelling approach," Ecological Modelling, Elsevier, vol. 221(15), pages 1779-1797.
    7. Kohei Koyama & Yoshiki Hidaka & Masayuki Ushio, 2012. "Dynamic Scaling in the Growth of a Non-Branching Plant, Cardiocrinum cordatum," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-5, September.
    8. Rousseaux, M. Cecilia & Figuerola, Patricia I. & Correa-Tedesco, Guillermo & Searles, Peter S., 2009. "Seasonal variations in sap flow and soil evaporation in an olive (Olea europaea L.) grove under two irrigation regimes in an arid region of Argentina," Agricultural Water Management, Elsevier, vol. 96(6), pages 1037-1044, June.
    9. Palomo, M. J. & Moreno, F. & Fernandez, J. E. & Diaz-Espejo, A. & Giron, I. F., 2002. "Determining water consumption in olive orchards using the water balance approach," Agricultural Water Management, Elsevier, vol. 55(1), pages 15-35, May.
    10. Xu, Meng & Jiang, Mengke & Wang, Hua-Feng, 2021. "Integrating metabolic scaling variation into the maximum entropy theory of ecology explains Taylor's law for individual metabolic rate in tropical forests," Ecological Modelling, Elsevier, vol. 455(C).
    11. Zhou, Yanqing & Gao, Xiaodong & Wang, Jiaxin & Robinson, Brett H. & Zhao, Xining, 2021. "Water-use patterns of Chinese wolfberry (Lycium barbarum L.) on the Tibetan Plateau," Agricultural Water Management, Elsevier, vol. 255(C).
    12. Hannah Capes & Robert J. Maillardet & Thomas G. Baker & Christopher J. Weston & Don McGuire & Ian C. Dumbrell & Andrew P. Robinson, 2017. "The Allometric Quarter-Power Scaling Model and Its Applicability to Grand Fir and Eucalyptus Trees," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 562-584, December.
    13. López-López, Manuel & Espadafor, Mónica & Testi, Luca & Lorite, Ignacio Jesús & Orgaz, Francisco & Fereres, Elías, 2018. "Water use of irrigated almond trees when subjected to water deficits," Agricultural Water Management, Elsevier, vol. 195(C), pages 84-93.
    14. GANIO-MEGO, Joe, 2022. "The instant and historical Preston curves: allometry quarter-power law valid for the humans," SocArXiv y8rbt, Center for Open Science.
    15. Phogat, V. & Skewes, Mark A. & Mahadevan, M. & Cox, J.W., 2013. "Evaluation of soil plant system response to pulsed drip irrigation of an almond tree under sustained stress conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 1-11.
    16. Denise Pumain & Céline Rozenblat, 2019. "Two metropolisation gradients in the European system of cities revealed by scaling laws," Environment and Planning B, , vol. 46(9), pages 1645-1662, November.
    17. Poblete-Echeverría, C. & Ortega-Farias, S. & Zuñiga, M. & Fuentes, S., 2012. "Evaluation of compensated heat-pulse velocity method to determine vine transpiration using combined measurements of eddy covariance system and microlysimeters," Agricultural Water Management, Elsevier, vol. 109(C), pages 11-19.
    18. Watt, Michael S. & Kirschbaum, Miko U.F., 2011. "Moving beyond simple linear allometric relationships between tree height and diameter," Ecological Modelling, Elsevier, vol. 222(23), pages 3910-3916.
    19. Liao, Renkuan & Wu, Wenyong & Hu, Yaqi & Xu, Di & Huang, Qiannan & Wang, Shiyu, 2019. "Micro-irrigation strategies to improve water-use efficiency of cherry trees in Northern China," Agricultural Water Management, Elsevier, vol. 221(C), pages 388-396.
    20. Herberich, Maximiliane Marion & Gayler, Sebastian & Anand, Madhur & Tielbörger, Katja, 2017. "Hydrological niche segregation of plant functional traits in an individual-based model," Ecological Modelling, Elsevier, vol. 356(C), pages 14-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:231:y:2020:i:c:s0378377418319656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.