IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v225y2019ics0378377419309746.html
   My bibliography  Save this article

Biostimulants action in common bean crop submitted to water deficit

Author

Listed:
  • Galvão, Ícaro Monteiro
  • dos Santos, Osvaldir Feliciano
  • de Souza, Mara Lúcia Cruz
  • de Jesus Guimarães, João
  • Kühn, Irineu Eduardo
  • Broetto, Fernando

Abstract

The water deficit (WD) is one of the severe problems in agriculture resulting in yield loss. The understating of crops behavior face to this condition becomes of great importance, and the use of biostimulants may act as a vegetal growth-promoting, considering its capacity of attenuate the impacts of WD on plants. This study aimed at evaluating the common bean changes in biometric parameters and its yield supplemented with biostimulants, as a response to the imposition of WD. The assay was conducted in a protected environment in Botucatu, Brazil, with common bean cv. IAC Imperador, disposed in split-plot in randomized blocks, with 4 repetitions. The treatments in the plots correspond to the irrigation depths (10 kPa and 40 kPa) and in the subplots the treatment B1 (control); B2 (Bacillus amyloliquefaciens BV 03) and B3 (Bacillus amyloliquefaciens BV 03 + brown algae extract – Ascophyllum nodosum). The irrigation was by drip and the management using a tensiometer. The biometric variables included stem diameter; leaf number and leaf area; leaf dry mass, stem, root and total; root length, diameter and volume; and yield parameters. Discussing the results, it was possible to conclude that the common bean is a very water dependable crop, with WD imposition interfering in all the studied variables, with growth decrease, biomass accumulation and yield. The applied biostimulants (B2 and B3) presented low capacity to attenuate the WD effects in common bean under the cultivation conditions adopted.

Suggested Citation

  • Galvão, Ícaro Monteiro & dos Santos, Osvaldir Feliciano & de Souza, Mara Lúcia Cruz & de Jesus Guimarães, João & Kühn, Irineu Eduardo & Broetto, Fernando, 2019. "Biostimulants action in common bean crop submitted to water deficit," Agricultural Water Management, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:agiwat:v:225:y:2019:i:c:s0378377419309746
    DOI: 10.1016/j.agwat.2019.105762
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419309746
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mathobo, Rudzani & Marais, Diana & Steyn, Joachim Martin, 2017. "The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.)," Agricultural Water Management, Elsevier, vol. 180(PA), pages 118-125.
    2. Karimzadeh Soureshjani, Hedayatollah & Nezami, Ahmad & Kafi, Mohammad & Tadayon, Mahmoudreza, 2019. "Responses of two common bean (Phaseolus vulgaris L.) genotypes to deficit irrigation," Agricultural Water Management, Elsevier, vol. 213(C), pages 270-279.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ângela Fernandes & Sara Figueiredo & Tiane C. Finimundy & José Pinela & Nikolaos Tzortzakis & Marija Ivanov & Marina Soković & Isabel C. F. R. Ferreira & Spyridon A. Petropoulos & Lillian Barros, 2021. "Chemical Composition and Bioactive Properties of Purple French Bean ( Phaseolus vulgaris L.) as Affected by Water Deficit Irrigation and Biostimulants Application," Sustainability, MDPI, vol. 13(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvatore La Bella & Giuseppe Virga & Nicolò Iacuzzi & Mario Licata & Leo Sabatino & Beppe Benedetto Consentino & Claudio Leto & Teresa Tuttolomondo, 2020. "Effects of Irrigation, Peat-Alternative Substrate and Plant Habitus on the Morphological and Production Characteristics of Sicilian Rosemary ( Rosmarinus officinalis L.) Biotypes Grown in Pot," Agriculture, MDPI, vol. 11(1), pages 1-15, December.
    2. Conrad Baker & Albert Thembinkosi Modi & Adornis D. Nciizah, 2021. "Weeding Frequency Effects on Growth and Yield of Dry Bean Intercropped with Sweet Sorghum and Cowpea under a Dryland Area," Sustainability, MDPI, vol. 13(21), pages 1-15, November.
    3. Pirzad, Alireza & Mohammadzadeh, Sevil, 2018. "Water use efficiency of three mycorrhizal Lamiaceae species (Lavandula officinalis, Rosmarinus officinalis and Thymus vulgaris)," Agricultural Water Management, Elsevier, vol. 204(C), pages 1-10.
    4. Yavuz, Duran & Seymen, Musa & Kal, Ünal & Atakul, Zeliha & Tanrıverdi, Ömer Burak & Türkmen, Önder & Yavuz, Nurcan, 2023. "Agronomic and physio-biochemical responses of lettuce to exogenous sodium nitroprusside (SNP) applied under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 277(C).
    5. Puangbut, Darunee & Jogloy, Sanun & Vorasoot, Nimitr, 2017. "Association of photosynthetic traits with water use efficiency and SPAD chlorophyll meter reading of Jerusalem artichoke under drought conditions," Agricultural Water Management, Elsevier, vol. 188(C), pages 29-35.
    6. Mukherjee, Subham & Nandi, Ramprosad & Kundu, Arnab & Bandyopadhyay, Prasanta Kumar & Nalia, Arpita & Ghatak, Priyanka & Nath, Rajib, 2022. "Soil water stress and physiological responses of chickpea (Cicer arietinum L.) subject to tillage and irrigation management in lower Gangetic plain," Agricultural Water Management, Elsevier, vol. 263(C).
    7. Nandi, R. & Mukherjee, S. & Bandyopadhyay, P.K. & Saha, M. & Singh, K.C. & Ghatak, P. & Kundu, A. & Saha, S. & Nath, R. & Chakraborti, P., 2023. "Assessment and mitigation of soil water stress of rainfed lentil (Lens culinaries Medik) through sowing time, tillage and potassic fertilization disparities," Agricultural Water Management, Elsevier, vol. 277(C).
    8. Singh, Manpreet & Singh, Sukhbir & Deb, Sanjit & Ritchie, Glen, 2023. "Root distribution, soil water depletion, and water productivity of sweet corn under deficit irrigation and biochar application," Agricultural Water Management, Elsevier, vol. 279(C).
    9. Abhijit Rai & Vivek Sharma & Jim Heitholt, 2020. "Dry Bean [ Phaseolus vulgaris L.] Growth and Yield Response to Variable Irrigation in the Arid to Semi-Arid Climate," Sustainability, MDPI, vol. 12(9), pages 1-25, May.
    10. Klem, Karel & Záhora, Jaroslav & Zemek, František & Trunda, Petr & Tůma, Ivan & Novotná, Kateřina & Hodaňová, Petra & Rapantová, Barbora & Hanuš, Jan & Vavříková, Jana & Holub, Petr, 2018. "Interactive effects of water deficit and nitrogen nutrition on winter wheat. Remote sensing methods for their detection," Agricultural Water Management, Elsevier, vol. 210(C), pages 171-184.
    11. Munia Alomari-Mheidat & María José Martín-Palomo & Pedro Castro-Valdecantos & Noemi Medina-Zurita & Alfonso Moriana & Mireia Corell, 2022. "Effect of Water Stress on the Yield of Indeterminate-Growth Green Bean Cultivars ( Phaseolus vulgaris L.) during the Autumn Cycle in Southern Spain," Agriculture, MDPI, vol. 13(1), pages 1-14, December.
    12. Mathobo, Rudzani & Marais, Diana & Steyn, Joachim Martin, 2018. "Calibration and validation of the SWB model for dry beans (Phaseolus vulgaris L.) at different drought stress levels," Agricultural Water Management, Elsevier, vol. 202(C), pages 113-121.
    13. Yerli, Caner & Sahin, Ustun & Ors, Selda & Kiziloglu, Fatih Mehmet, 2023. "Improvement of water and crop productivity of silage maize by irrigation with different levels of recycled wastewater under conventional and zero tillage conditions," Agricultural Water Management, Elsevier, vol. 277(C).
    14. Gurdak Radosław & Bartold Maciej, 2021. "Remote sensing techniques to assess chlorophyll fluorescence in support of crop monitoring in Poland," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 25(4), pages 226-237, October.
    15. Dou, Zhiyao & Feng, Hanlong & Zhang, Hao & Abdelghany, Ahmed Elsayed & Zhang, Fucang & Li, Zhijun & Fan, Junliang, 2023. "Silicon application mitigated the adverse effects of salt stress and deficit irrigation on drip-irrigated greenhouse tomato," Agricultural Water Management, Elsevier, vol. 289(C).
    16. Matyáš Orsák & Zora Kotíková & František Hnilička & Jaromír Lachman, 2023. "Effect of long-term drought and waterlogging stress on photosynthetic pigments in potato," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(4), pages 152-160.
    17. Marcelo de Almeida Silva & Hariane Luiz Santos & Lusiane de Sousa Ferreira & Dayane Mércia Ribeiro Silva & Jania Claudia Camilo dos Santos & Fernanda Pacheco de Almeida Prado Bortolheiro, 2023. "Physiological Changes and Yield Components of Safflower ( Carthamus tinctorius L.) Lines as a Function of Water Deficit and Recovery in the Flowering Phase," Agriculture, MDPI, vol. 13(3), pages 1-21, February.
    18. Nam, Suyun & Kang, Seonghwan & Kim, Jongyun, 2020. "Maintaining a constant soil moisture level can enhance the growth and phenolic content of sweet basil better than fluctuating irrigation," Agricultural Water Management, Elsevier, vol. 238(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:225:y:2019:i:c:s0378377419309746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.