IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v224y2019ic12.html
   My bibliography  Save this article

Soil organic carbon and its labile fractions in paddy soil as influenced by water regimes and straw management

Author

Listed:
  • Mi, Wenhai
  • Sun, Yan
  • Zhao, Cai
  • Wu, Lianghuan

Abstract

Understanding the effects of water regimes and straw management on soil organic carbon (SOC) pools is necessary to improve soil C sequestration and soil quality. Based on a long-term field experiment (15 years), we examined impacts of water regimes and straw management methods on total soil organic C (TOC), particulate organic C (POC) and potassium permanganate-oxidizable C (KMnO4–C) at two soil depths. Water regimes consisted of flooding cultivation and non-flooded cultivation. In non-flooded cultivation, limited irrigation was employed to keep the soil moist condition without standing water covering the field during the rice-growing season. It is substantially different from conventional flooded rice cultivation. The two straw management methods were straw mulching and straw removal. The results showed that water management had greater effects on TOC and KMnO4–C than did straw management at 0–10 cm soil layer. Compared to the non-flooded treatment, flooding cultivation resulted in 17.4% higher TOC and 31.4% higher KMnO4–C contents. Correspondingly, straw management showed dominant effects on POC. Straw mulching significantly increased POC content by 13.0% as compared to the straw removal treatment. However, at deeper soil depth (10–20 cm), labile SOC fractions were only affected by water regimes. The higher carbon management index (CMI) values at 0–20 cm were recorded in the flooding condition with straw mulching treatment. This was attributed to the increased carbon pool index (CPI), which contributed to the formation of more stable organic compounds that collectively act as a soil reservoir. The combined non-flooded cultivation and straw mulching method (NFC–SM) produced a similar 15–year average rice grain yield and TOC content in 2016 compared to the traditional flooding cultivation with straw removal treatment (FC–SR). Our data indicated that NFC–SM could be an ideal strategy not only to save water but also to maintain soil fertility.

Suggested Citation

  • Mi, Wenhai & Sun, Yan & Zhao, Cai & Wu, Lianghuan, 2019. "Soil organic carbon and its labile fractions in paddy soil as influenced by water regimes and straw management," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
  • Handle: RePEc:eee:agiwat:v:224:y:2019:i:c:12
    DOI: 10.1016/j.agwat.2019.105752
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418319358
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105752?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qin, Jiangtao & Hu, Feng & Zhang, Bin & Wei, Zhenggui & Li, Huixin, 2006. "Role of straw mulching in non-continuously flooded rice cultivation," Agricultural Water Management, Elsevier, vol. 83(3), pages 252-260, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Rakesh & Abhas Kumar Sinha & Deepranjan Sarkar & Dewali Roy & Divya Bodiga & Samaresh Sahoo & Prakash Kumar Jha & Pradeep Kumar Dubey & Amitava Rakshit, 2023. "Active and Passive Carbon Fractions in Contrasting Cropping Systems, Tillage Practices, and Soil Types," Land, MDPI, vol. 12(2), pages 1-22, January.
    2. Kulasinghe, Tharindu Nuwan & Dharmakeerthi, Randombage Saman, 2022. "Effects of land use type and tank components on soil properties and sustainability of tank cascade system in the Dry Zone of north central Sri Lanka," Agricultural Systems, Elsevier, vol. 201(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M L Jat & Yadvinder Singh & M L Jat & MK Gathala & YS Saharawat & JK Ladha & YS Saharawat, 2019. "Conservation Agriculture in Intensive Rice-Wheat Rotation of Western Indo-Gangetic Plains-Effect on Crop Physiology, Yield, Water Productivity and Economic Profitability," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 18(3), pages 88-102, April.
    2. Jalota, S.K. & Singh, K.B. & Chahal, G.B.S. & Gupta, R.K. & Chakraborty, Somsubhra & Sood, Anil & Ray, S.S. & Panigrahy, S., 2009. "Integrated effect of transplanting date, cultivar and irrigation on yield, water saving and water productivity of rice (Oryza sativa L.) in Indian Punjab: Field and simulation study," Agricultural Water Management, Elsevier, vol. 96(7), pages 1096-1104, July.
    3. J. Qin & X. Wang & F. Hu & H. Li, 2010. "Growth and physiological performance responses to drought stress under non-flooded rice cultivation with straw mulching," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 56(2), pages 51-59.
    4. Singh, Samar Pal & Mahapatra, B.S. & Pramanick, Biswajit & Yadav, Vimal Raj, 2021. "Effect of irrigation levels, planting methods and mulching on nutrient uptake, yield, quality, water and fertilizer productivity of field mustard (Brassica rapa L.) under sandy loam soil," Agricultural Water Management, Elsevier, vol. 244(C).
    5. Jiao, Jiaguo & Shi, Kun & Li, Peng & Sun, Zhen & Chang, Dali & Shen, Xueshan & Wu, Di & Song, Xiuchao & Liu, Manqiang & Li, Huixin & Hu, Feng & Xu, Li, 2018. "Assessing of an irrigation and fertilization practice for improving rice production in the Taihu Lake region (China)," Agricultural Water Management, Elsevier, vol. 201(C), pages 91-98.
    6. Wei, Jun & Cui, Yuanlai & Luo, Yufeng, 2023. "Rice growth period detection and paddy field evapotranspiration estimation based on an improved SEBAL model: Considering the applicable conditions of the advection equation," Agricultural Water Management, Elsevier, vol. 278(C).
    7. Ishfaq, Muhammad & Farooq, Muhammad & Zulfiqar, Usman & Hussain, Saddam & Akbar, Nadeem & Nawaz, Ahmad & Anjum, Shakeel Ahmad, 2020. "Alternate wetting and drying: A water-saving and ecofriendly rice production system," Agricultural Water Management, Elsevier, vol. 241(C).
    8. Akpoti, Komlavi & Dossou-Yovo, Elliott R. & Zwart, Sander J. & Kiepe, Paul, 2021. "The potential for expansion of irrigated rice under alternate wetting and drying in Burkina Faso," Agricultural Water Management, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:224:y:2019:i:c:12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.