IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v184y2017icp211-220.html
   My bibliography  Save this article

Irrigation management with remote sensing: Evaluating irrigation requirement for maize under Mediterranean climate condition

Author

Listed:
  • Toureiro, Célia
  • Serralheiro, Ricardo
  • Shahidian, Shakib
  • Sousa, Adélia

Abstract

Water use control methods and water resources planning are of high priority. In irrigated agriculture, the right way to save water is to increase water use efficiency through better management. The present work validates procedures and methodologies using remote sensing to determine the water availability in the soil at each moment, giving the opportunity for the application of the water depth strictly necessary to optimise crop growth (optimum irrigation timing and irrigation amount). The analysis is applied to the Irrigation District of Divor, Évora, using 7 experimental plots, which are areas irrigated by centre-pivot systems, cultivated to maize. Data were determined from images of the cultivated surface obtained by satellite and integrated with atmosphere and crop parameters to calculate biophysical indicators and indices of water stress in the vegetation—Normalized Difference Vegetation Index (NDVI), Kc, and Kcb. Therefore, evapotranspiration (ETc) was estimated and used to calculate crop water requirement, together with the opportunity and the amount of irrigation water to allocate. Although remote sensing data available from satellite imagery presented some practical constraints, the study could contribute to the validation of a new methodology that can be used for irrigation management of a large irrigated area, easier and at lower costs than the traditional FAO recommended crop coefficients method. The remote sensing based methodology can also contribute to significant saves of irrigation water.

Suggested Citation

  • Toureiro, Célia & Serralheiro, Ricardo & Shahidian, Shakib & Sousa, Adélia, 2017. "Irrigation management with remote sensing: Evaluating irrigation requirement for maize under Mediterranean climate condition," Agricultural Water Management, Elsevier, vol. 184(C), pages 211-220.
  • Handle: RePEc:eee:agiwat:v:184:y:2017:i:c:p:211-220
    DOI: 10.1016/j.agwat.2016.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416300476
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Droogers, P. & Immerzeel, W.W. & Lorite, I.J., 2010. "Estimating actual irrigation application by remotely sensed evapotranspiration observations," Agricultural Water Management, Elsevier, vol. 97(9), pages 1351-1359, September.
    2. Gonzalez-Dugo, M.P. & Mateos, L., 2008. "Spectral vegetation indices for benchmarking water productivity of irrigated cotton and sugarbeet crops," Agricultural Water Management, Elsevier, vol. 95(1), pages 48-58, January.
    3. Allen, Richard G. & Pereira, Luis S. & Howell, Terry A. & Jensen, Marvin E., 2011. "Evapotranspiration information reporting: II. Recommended documentation," Agricultural Water Management, Elsevier, vol. 98(6), pages 921-929, April.
    4. Allen, Richard G. & Pereira, Luis S. & Howell, Terry A. & Jensen, Marvin E., 2011. "Evapotranspiration information reporting: I. Factors governing measurement accuracy," Agricultural Water Management, Elsevier, vol. 98(6), pages 899-920, April.
    5. Bausch, Walter C., 1995. "Remote sensing of crop coefficients for improving the irrigation scheduling of corn," Agricultural Water Management, Elsevier, vol. 27(1), pages 55-68, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yousaf, Wasif & Awan, Wakas Karim & Kamran, Muhammad & Ahmad, Sajid Rashid & Bodla, Habib Ullah & Riaz, Mohammad & Umar, Muhammad & Chohan, Khurram, 2021. "A paradigm of GIS and remote sensing for crop water deficit assessment in near real time to improve irrigation distribution plan," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Mahmoud, Shereif H. & Gan, Thian Yew, 2019. "Irrigation water management in arid regions of Middle East: Assessing spatio-temporal variation of actual evapotranspiration through remote sensing techniques and meteorological data," Agricultural Water Management, Elsevier, vol. 212(C), pages 35-47.
    3. Segovia-Cardozo, Daniel Alberto & Rodríguez-Sinobas, Leonor & Zubelzu, Sergio, 2019. "Water use efficiency of corn among the irrigation districts across the Duero river basin (Spain): Estimation of local crop coefficients by satellite images," Agricultural Water Management, Elsevier, vol. 212(C), pages 241-251.
    4. Christian Mera-Parra & Fernando Oñate-Valdivieso & Priscilla Massa-Sánchez & Pablo Ochoa-Cueva, 2021. "Establishment of the Baseline for the IWRM in the Ecuadorian Andean Basins: Land Use Change, Water Recharge, Meteorological Forecast and Hydrological Modeling," Land, MDPI, vol. 10(5), pages 1-18, May.
    5. Jeffrey Vervloesem & Ernesto Marcheggiani & MD Abdul Mueed Choudhury & Bart Muys, 2022. "Effects of Photovoltaic Solar Farms on Microclimate and Vegetation Diversity," Sustainability, MDPI, vol. 14(12), pages 1-31, June.
    6. Zhao, Tianxing & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Jia, Biao & Mao, Wei & Wu, Jingwei, 2022. "A new approach for estimating spatial-temporal phreatic evapotranspiration at a regional scale using NDVI and water table depth measurements," Agricultural Water Management, Elsevier, vol. 264(C).
    7. Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    8. Liming Zhu & Zhangze Gu & Guizhi Tian & Jiahao Zhang, 2023. "A New Method for Estimating Irrigation Water Use via Soil Moisture," Agriculture, MDPI, vol. 13(4), pages 1-15, March.
    9. Hamze, Mohamad & Cheviron, Bruno & Baghdadi, Nicolas & Lo, Madiop & Courault, Dominique & Zribi, Mehrez, 2023. "Detection of irrigation dates and amounts on maize plots from the integration of Sentinel-2 derived Leaf Area Index values in the Optirrig crop model," Agricultural Water Management, Elsevier, vol. 283(C).
    10. Fontanet, Mireia & Scudiero, Elia & Skaggs, Todd H. & Fernàndez-Garcia, Daniel & Ferrer, Francesc & Rodrigo, Gema & Bellvert, Joaquim, 2020. "Dynamic Management Zones for Irrigation Scheduling," Agricultural Water Management, Elsevier, vol. 238(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    3. López-Urrea, R. & Sánchez, J.M. & de la Cruz, F. & González-Piqueras, J. & Chávez, J.L., 2020. "Evapotranspiration and crop coefficients from lysimeter measurements for sprinkler-irrigated canola," Agricultural Water Management, Elsevier, vol. 239(C).
    4. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.
    6. Pozníková, Gabriela & Fischer, Milan & van Kesteren, Bram & Orság, Matěj & Hlavinka, Petr & Žalud, Zdeněk & Trnka, Miroslav, 2018. "Quantifying turbulent energy fluxes and evapotranspiration in agricultural field conditions: A comparison of micrometeorological methods," Agricultural Water Management, Elsevier, vol. 209(C), pages 249-263.
    7. Mokhtari, Ali & Noory, Hamideh & Vazifedoust, Majid & Palouj, Mojtaba & Bakhtiari, Atousa & Barikani, Elham & Zabihi Afrooz, Ramezan Ali & Fereydooni, Fatemeh & Sadeghi Naeni, Ali & Pourshakouri, Farr, 2019. "Evaluation of single crop coefficient curves derived from Landsat satellite images for major crops in Iran," Agricultural Water Management, Elsevier, vol. 218(C), pages 234-249.
    8. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    9. Mahmoud, Shereif H. & Gan, Thian Yew, 2019. "Irrigation water management in arid regions of Middle East: Assessing spatio-temporal variation of actual evapotranspiration through remote sensing techniques and meteorological data," Agricultural Water Management, Elsevier, vol. 212(C), pages 35-47.
    10. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    11. Qiu, Rangjian & Li, Longan & Liu, Chunwei & Wang, Zhenchang & Zhang, Baozhong & Liu, Zhandong, 2022. "Evapotranspiration estimation using a modified crop coefficient model in a rotated rice-winter wheat system," Agricultural Water Management, Elsevier, vol. 264(C).
    12. Ouaadi, Nadia & Jarlan, Lionel & Khabba, Saïd & Le Page, Michel & Chakir, Adnane & Er-Raki, Salah & Frison, Pierre-Louis, 2023. "Are the C-band backscattering coefficient and interferometric coherence suitable substitutes of NDVI for the monitoring of the FAO-56 crop coefficient?," Agricultural Water Management, Elsevier, vol. 282(C).
    13. Feng, Jiaojiao & Wang, Weizhen & Che, Tao & Xu, Feinan, 2023. "Performance of the improved two-source energy balance model for estimating evapotranspiration over the heterogeneous surface," Agricultural Water Management, Elsevier, vol. 278(C).
    14. Machakaire, A.T.B. & Steyn, J.M. & Franke, A.C., 2021. "Assessing evapotranspiration and crop coefficients of potato in a semi-arid climate using Eddy Covariance techniques," Agricultural Water Management, Elsevier, vol. 255(C).
    15. Carpintero, E. & Mateos, L. & Andreu, A. & González-Dugo, M.P., 2020. "Effect of the differences in spectral response of Mediterranean tree canopies on the estimation of evapotranspiration using vegetation index-based crop coefficients," Agricultural Water Management, Elsevier, vol. 238(C).
    16. Sánchez, Nilda & Martínez-Fernández, José & Calera, Alfonso & Torres, Enrique & Pérez-Gutiérrez, Carlos, 2010. "Combining remote sensing and in situ soil moisture data for the application and validation of a distributed water balance model (HIDROMORE)," Agricultural Water Management, Elsevier, vol. 98(1), pages 69-78, December.
    17. Rana Muhammad Adnan & Salim Heddam & Zaher Mundher Yaseen & Shamsuddin Shahid & Ozgur Kisi & Binquan Li, 2020. "Prediction of Potential Evapotranspiration Using Temperature-Based Heuristic Approaches," Sustainability, MDPI, vol. 13(1), pages 1-21, December.
    18. Drerup, Philipp & Brueck, Holger & Scherer, Heinrich W., 2017. "Evapotranspiration of winter wheat estimated with the FAO 56 approach and NDVI measurements in a temperate humid climate of NW Europe," Agricultural Water Management, Elsevier, vol. 192(C), pages 180-188.
    19. French, Andrew N. & Hunsaker, Douglas J. & Sanchez, Charles A. & Saber, Mazin & Gonzalez, Juan Roberto & Anderson, Ray, 2020. "Satellite-based NDVI crop coefficients and evapotranspiration with eddy covariance validation for multiple durum wheat fields in the US Southwest," Agricultural Water Management, Elsevier, vol. 239(C).
    20. Mateos, L. & González-Dugo, M.P. & Testi, L. & Villalobos, F.J., 2013. "Monitoring evapotranspiration of irrigated crops using crop coefficients derived from time series of satellite images. I. Method validation," Agricultural Water Management, Elsevier, vol. 125(C), pages 81-91.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:184:y:2017:i:c:p:211-220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.