IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v174y2016icp66-73.html
   My bibliography  Save this article

Faecal pollution on vegetables and soil drip irrigated with treated municipal wastewaters

Author

Listed:
  • Lonigro, Antonio
  • Rubino, Pietro
  • Lacasella, Vita
  • Montemurro, Nicola

Abstract

A three-year study was carried out to evaluate the effects of three different types of municipal treated wastewater distributed by drip irrigation on the microbial quality of some vegetable crops. The three different treated wastewater were: a secondary effluent originated from the municipal treatment plant after screening and grit removal, primary clarifiers followed by activated sludge process and partial aerobic stabilization of the sludge, finally the chemical precipitation of phosphorus, denitrification and chlorination; the second source, a tertiary-treated wastewater is originated after that the secondary effluent is first treated through granular media sand filtration and then it is pumped into the second phase of treatment represented by ultra-filtration module equipped with hollow fibre membranes (nominal porosity 0.2μm). The third water source was a simplified lagooning treatment in which part of the secondary effluent is pumped outside of the municipal plant and it is collected in a big reversed pyramid-shaped land pit, in this tank the water resided for a 4–5 days before being distributed to crops. In an experimental field in southern Italy (Apulia region) the physico-chemical and microbiological characteristics of the irrigation waters and faecal pollution on typical vegetable crops of southern Italy environment were determined. Total and Faecal Coliforms, Escherichia coli, Salmonella and protozoa Giardia and Cryptosporidium were monitored in the irrigation water, on plants and on soil at harvesting time. The different quality of irrigation water affected yields. For microbial results, however, in spite of the water contained high levels of microbial load (248, 1713 and 123429 E. coli cfu 100mL−1 in Tertiary filtered Wastewater, Lagoon treated Wastewater and Secondary treated Wastewater, respectively), exceeding the values of law (10 E. coli cfu 100mL−1), on crops and on soil, at harvesting time revealed no pollution. Salmonella and Cryptosporidium were never found in water, soil and crops. These data show that it is possible to irrigate with municipal treated wastewater and how despite they have higher values than those imposed by Italian law, crops quality and soil do not present any problems of faecal pollution and therefore do not cause risks for human health.

Suggested Citation

  • Lonigro, Antonio & Rubino, Pietro & Lacasella, Vita & Montemurro, Nicola, 2016. "Faecal pollution on vegetables and soil drip irrigated with treated municipal wastewaters," Agricultural Water Management, Elsevier, vol. 174(C), pages 66-73.
  • Handle: RePEc:eee:agiwat:v:174:y:2016:i:c:p:66-73
    DOI: 10.1016/j.agwat.2016.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416300385
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Nakshabandi, G. A. & Saqqar, M. M. & Shatanawi, M. R. & Fayyad, M. & Al-Horani, H., 1997. "Some environmental problems associated with the use of treated wastewater for irrigation in Jordan," Agricultural Water Management, Elsevier, vol. 34(1), pages 81-94, July.
    2. Al-Lahham, O. & El Assi, N. M. & Fayyad, M., 2003. "Impact of treated wastewater irrigation on quality attributes and contamination of tomato fruit," Agricultural Water Management, Elsevier, vol. 61(1), pages 51-62, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Palacios, Oskar A. & Contreras, Claudia A. & Muñoz-Castellanos, Laila N. & González-Rangel, María O. & Rubio-Arias, Hector & Palacios-Espinosa, Alejandro & Nevárez-Moorillón, Guadalupe V., 2017. "Monitoring of indicator and multidrug resistant bacteria in agricultural soils under different irrigation patterns," Agricultural Water Management, Elsevier, vol. 184(C), pages 19-27.
    2. Nicoleta Ungureanu & Valentin Vlăduț & Gheorghe Voicu, 2020. "Water Scarcity and Wastewater Reuse in Crop Irrigation," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    3. Christou, Anastasis & Maratheftis, Grivas & Elia, Michael & Hapeshi, Evroula & Michael, Costas & Fatta-Kassinos, Despo, 2016. "Effects of wastewater applied with discrete irrigation techniques on strawberry plants’ productivity and the safety, quality characteristics and antioxidant capacity of fruits," Agricultural Water Management, Elsevier, vol. 173(C), pages 48-54.
    4. Li, Jiusheng & Wen, Jie, 2016. "Effects of water managements on transport of E. coli in soil-plant system for drip irrigation applying secondary sewage effluent," Agricultural Water Management, Elsevier, vol. 178(C), pages 12-20.
    5. Deepak Singh & Neelam Patel & Agossou Gadedjisso-Tossou & Sridhar Patra & Nisha Singh & Pushpendra Kumar Singh, 2020. "Incidence of Escherichia coli in Vegetable Crops and Soil Profile Drip Irrigated with Primarily Treated Municipal Wastewater in a Semi-Arid Peri Urban Area," Agriculture, MDPI, vol. 10(7), pages 1-17, July.
    6. Salar Rezapour & Amin Nouri & Hawzhin M. Jalil & Shawn A. Hawkins & Scott B. Lukas, 2021. "Influence of Treated Wastewater Irrigation on Soil Nutritional-Chemical Attributes Using Soil Quality Index," Sustainability, MDPI, vol. 13(4), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aiello, Rosa & Cirelli, Giuseppe Luigi & Consoli, Simona, 2007. "Effects of reclaimed wastewater irrigation on soil and tomato fruits: A case study in Sicily (Italy)," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 65-72, October.
    2. Li, Na & Kang, Yaohu & Li, Xiaobin & Wan, Shuqin, 2019. "Response of tall fescue to the reclamation of severely saline coastal soil using treated effluent in Bohai Bay," Agricultural Water Management, Elsevier, vol. 218(C), pages 203-210.
    3. Li, Na & Kang, Yaohu & Li, Xiaobin & Wan, Shuqin & Xu, Jiachong, 2019. "Effect of the micro-sprinkler irrigation method with treated effluent on soil physical and chemical properties in sea reclamation land," Agricultural Water Management, Elsevier, vol. 213(C), pages 222-230.
    4. Mabasa, Nyiko C. & Jones, Clifford L.W. & Laing, Mark, 2021. "The use of treated brewery effluent for salt tolerant crop irrigation," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Zafar Iqbal Khan & Rehan Haider & Kafeel Ahmad & Muhammad Nadeem & Asma Ashfaq & Abdulwahed Fahad Alrefaei & Mikhlid H. Almutairi & Naunain Mehmood & Aima Iram Batool & Hafsa Memona & Ijaz Rasool Noor, 2023. "Evaluation of Cu, Zn, Fe, and Mn Concentrations in Water, Soil, and Fruit Samples in Sargodha District, Pakistan," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
    6. Zema, Demetrio Antonio & Bombino, Giuseppe & Andiloro, Serafina & Zimbone, Santo Marcello, 2012. "Irrigation of energy crops with urban wastewater: Effects on biomass yields, soils and heating values," Agricultural Water Management, Elsevier, vol. 115(C), pages 55-65.
    7. Kiziloglu, F.M. & Turan, M. & Sahin, U. & Kuslu, Y. & Dursun, A., 2008. "Effects of untreated and treated wastewater irrigation on some chemical properties of cauliflower (Brassica olerecea L. var. botrytis) and red cabbage (Brassica olerecea L. var. rubra) grown on calcar," Agricultural Water Management, Elsevier, vol. 95(6), pages 716-724, June.
    8. Kalavrouziotis, I.K. & Robolas, P. & Koukoulakis, P.H. & Papadopoulos, A.H., 2008. "Effects of municipal reclaimed wastewater on the macro- and micro-elements status of soil and of Brassica oleracea var. Italica, and B. oleracea var. Gemmifera," Agricultural Water Management, Elsevier, vol. 95(4), pages 419-426, April.
    9. Bame, I.B. & Hughes, J.C. & Titshall, L.W. & Buckley, C.A., 2014. "The effect of irrigation with anaerobic baffled reactor effluent on nutrient availability, soil properties and maize growth," Agricultural Water Management, Elsevier, vol. 134(C), pages 50-59.
    10. Blum, Julius & Herpin, Uwe & Melfi, Adolpho José & Montes, Célia Regina, 2012. "Soil properties in a sugarcane plantation after the application of treated sewage effluent and phosphogypsum in Brazil," Agricultural Water Management, Elsevier, vol. 115(C), pages 203-216.
    11. Nikolaos Tzortzakis & Christos Saridakis & Antonios Chrysargyris, 2020. "Treated Wastewater and Fertigation Applied for Greenhouse Tomato Cultivation Grown in Municipal Solid Waste Compost and Soil Mixtures," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    12. Gatta, Giuseppe & Libutti, Angela & Gagliardi, Anna & Beneduce, Luciano & Brusetti, Lorenzo & Borruso, Luigimaria & Disciglio, Grazia & Tarantino, Emanuele, 2015. "Treated agro-industrial wastewater irrigation of tomato crop: Effects on qualitative/quantitative characteristics of production and microbiological properties of the soil," Agricultural Water Management, Elsevier, vol. 149(C), pages 33-43.
    13. Mahmoud S. Hashem & Wei Guo & Xuebin Qi & Ping Li, 2022. "Assessing the Effect of Irrigation with Reclaimed Water Using Different Irrigation Techniques on Tomatoes Quality Parameters," Sustainability, MDPI, vol. 14(5), pages 1-19, March.
    14. Al-Lahham, O. & El Assi, N. M. & Fayyad, M., 2003. "Impact of treated wastewater irrigation on quality attributes and contamination of tomato fruit," Agricultural Water Management, Elsevier, vol. 61(1), pages 51-62, June.
    15. Marofi, Safar & Shakarami, Masoud & Rahimi, Ghasem & Ershadfath, Farnaz, 2015. "Effect of wastewater and compost on leaching nutrients of soil column under basil cultivation," Agricultural Water Management, Elsevier, vol. 158(C), pages 266-276.
    16. Elgallal, M. & Fletcher, L. & Evans, B., 2016. "Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: A review," Agricultural Water Management, Elsevier, vol. 177(C), pages 419-431.
    17. Elfanssi, Saloua & Ouazzani, Naaila & Mandi, Laila, 2018. "Soil properties and agro-physiological responses of alfalfa (Medicago sativa L.) irrigated by treated domestic wastewater," Agricultural Water Management, Elsevier, vol. 202(C), pages 231-240.
    18. Ioslovich, Ilya & Gutman, Per-Olof, 2001. "A model for the global optimization of water prices and usage for the case of spatially distributed sources and consumers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 56(4), pages 347-356.
    19. Pholosho Mmmateko Kgopa & Phatu William Mashela & Alen Manyevere, 2021. "Microbial Quality of Treated Wastewater and Borehole Water Used for Irrigation in a Semi-Arid Area," IJERPH, MDPI, vol. 18(16), pages 1-12, August.
    20. Liang, Qiong & Gao, Rutai & Xi, Beidou & Zhang, Yuan & Zhang, Hui, 2014. "Long-term effects of irrigation using water from the river receiving treated industrial wastewater on soil organic carbon fractions and enzyme activities," Agricultural Water Management, Elsevier, vol. 135(C), pages 100-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:174:y:2016:i:c:p:66-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.