IDEAS home Printed from https://ideas.repec.org/a/bpj/strimo/v29y2012i2p107-132n4.html
   My bibliography  Save this article

Bounds for joint portfolios of dependent risks

Author

Listed:
  • Puccetti Giovanni
  • Rüschendorf Ludger

    (University of Freiburg, Mathematische Stochastik, Freiburg, Deutschland)

Abstract

In this paper, we survey, extend and improve several bounds for the distribution function and the tail probabilities of portfolios, where the dependence structure within the portfolio is completely unknown or only partially known. We present various methods for obtaining bounds based on rearrangements, duality theory, conditional moments and reduction techniques. In particular, we consider the case where only the simple marginal distributions are known, the general overlapping marginals case where certain joint distributions are known and the case of additional restrictions on the dependence structure, as, for example, the restriction to positive dependence. Some of the bounds pose a considerable numerical challenge. We discuss the quality of the bounds and numerical aspects in some examples.

Suggested Citation

  • Puccetti Giovanni & Rüschendorf Ludger, 2012. "Bounds for joint portfolios of dependent risks," Statistics & Risk Modeling, De Gruyter, vol. 29(2), pages 107-132, June.
  • Handle: RePEc:bpj:strimo:v:29:y:2012:i:2:p:107-132:n:4
    DOI: 10.1524/strm.2012.1117
    as

    Download full text from publisher

    File URL: https://doi.org/10.1524/strm.2012.1117
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1524/strm.2012.1117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Denuit, M. & Genest, C. & Marceau, E., 1999. "Stochastic bounds on sums of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 85-104, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Puccetti, Giovanni & Wang, Bin & Wang, Ruodu, 2013. "Complete mixability and asymptotic equivalence of worst-possible VaR and ES estimates," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 821-828.
    2. Roberto Fontana & Elisa Luciano & Patrizia Semeraro, 2021. "Model risk in credit risk," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 176-202, January.
    3. Lux, Thibaut & Papapantoleon, Antonis, 2019. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 73-83.
    4. Ruodu Wang & Liang Peng & Jingping Yang, 2013. "Bounds for the sum of dependent risks and worst Value-at-Risk with monotone marginal densities," Finance and Stochastics, Springer, vol. 17(2), pages 395-417, April.
    5. Rüschendorf, L., 2019. "Analysis of risk bounds in partially specified additive factor models," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 115-121.
    6. Embrechts, Paul & Puccetti, Giovanni & Rüschendorf, Ludger, 2013. "Model uncertainty and VaR aggregation," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2750-2764.
    7. Rüschendorf L., 2018. "Risk bounds with additional information on functionals of the risk vector," Dependence Modeling, De Gruyter, vol. 6(1), pages 102-113, June.
    8. Bernard, Carole & Kazzi, Rodrigue & Vanduffel, Steven, 2020. "Range Value-at-Risk bounds for unimodal distributions under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 9-24.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansour Shrahili & Mohamed Kayid, 2023. "Stochastic Orderings of the Idle Time of Inactive Standby Systems," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    2. Serguei Foss & Andrew Richards, 2010. "On Sums of Conditionally Independent Subexponential Random Variables," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 102-119, February.
    3. Thibaut Lux & Antonis Papapantoleon, 2016. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Papers 1610.09734, arXiv.org, revised Nov 2018.
    4. Mihai Banciu & Fredrik Ødegaard & Alia Stanciu, 2019. "Distribution-free bounds for the expected marginal seat revenue heuristic with dependent demands," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 18(2), pages 155-163, April.
    5. Kaas, Rob & Laeven, Roger J.A. & Nelsen, Roger B., 2009. "Worst VaR scenarios with given marginals and measures of association," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 146-158, April.
    6. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Jing Yao, 2017. "How robust is the value-at-risk of credit risk portfolios?," The European Journal of Finance, Taylor & Francis Journals, vol. 23(6), pages 507-534, May.
    7. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    8. Laeven, Roger J.A., 2009. "Worst VaR scenarios: A remark," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 159-163, April.
    9. Pablo Azcue & Nora Muler & Zbigniew Palmowski, 2016. "Optimal dividend payments for a two-dimensional insurance risk process," Papers 1603.07019, arXiv.org, revised Apr 2018.
    10. Embrechts, Paul & Puccetti, Giovanni, 2010. "Bounds for the sum of dependent risks having overlapping marginals," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 177-190, January.
    11. Mesfioui, Mhamed & Quessy, Jean-Francois, 2005. "Bounds on the value-at-risk for the sum of possibly dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 135-151, August.
    12. Irmina Czarna & Zbigniew Palmowski, 2009. "De Finetti's dividend problem and impulse control for a two-dimensional insurance risk process," Papers 0906.2100, arXiv.org, revised Feb 2011.
    13. Christian Genest & Johanna G. Nešlehová, 2020. "A Conversation With Paul Embrechts," International Statistical Review, International Statistical Institute, vol. 88(3), pages 521-547, December.
    14. Xavier Milhaud & Victorien Poncelet & Clement Saillard, 2018. "Operational Choices for Risk Aggregation in Insurance: PSDization and SCR Sensitivity," Risks, MDPI, vol. 6(2), pages 1-23, April.
    15. Denuit, Michel & Lefevre, Claude & Mesfioui, M'hamed, 1999. "On s-convex stochastic extrema for arithmetic risks," Insurance: Mathematics and Economics, Elsevier, vol. 25(2), pages 143-155, November.
    16. Chan, Wai-Sum & Yang, Hailiang & Zhang, Lianzeng, 2003. "Some results on ruin probabilities in a two-dimensional risk model," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 345-358, July.
    17. Xuan Vinh Doan & Xiaobo Li & Karthik Natarajan, 2015. "Robustness to Dependency in Portfolio Optimization Using Overlapping Marginals," Operations Research, INFORMS, vol. 63(6), pages 1468-1488, December.
    18. Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2022. "Robust Distortion Risk Measures," Papers 2205.08850, arXiv.org, revised Mar 2023.
    19. Bolancé, Catalina & Bahraoui, Zuhair & Artís, Manuel, 2014. "Quantifying the risk using copulae with nonparametric marginals," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 46-56.
    20. Paul Embrechts & Giovanni Puccetti, 2006. "Bounds for Functions of Dependent Risks," Finance and Stochastics, Springer, vol. 10(3), pages 341-352, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:strimo:v:29:y:2012:i:2:p:107-132:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.