IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v48y2011i1p56-63.html
   My bibliography  Save this article

On the distribution of the (un)bounded sum of random variables

Author

Listed:
  • Cherubini, Umberto
  • Mulinacci, Sabrina
  • Romagnoli, Silvia

Abstract

We propose a general treatment of random variables aggregation accounting for the dependence among variables and bounded or unbounded support of their sum. The approach is based on the extension to the concept of convolution to dependent variables, involving copula functions. We show that some classes of copula functions (such as Marshall-Olkin and elliptical) cannot be used to represent the dependence structure of two variables whose sum is bounded, while Archimedean copulas can be applied only if the generator becomes linear beyond some point. As for the application, we study the problem of capital allocation between risks when the sum of losses is bounded.

Suggested Citation

  • Cherubini, Umberto & Mulinacci, Sabrina & Romagnoli, Silvia, 2011. "On the distribution of the (un)bounded sum of random variables," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 56-63, January.
  • Handle: RePEc:eee:insuma:v:48:y:2011:i:1:p:56-63
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00103-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Denuit, M. & Genest, C. & Marceau, E., 1999. "Stochastic bounds on sums of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 85-104, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gijbels, Irène & Herrmann, Klaus, 2014. "On the distribution of sums of random variables with copula-induced dependence," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 27-44.
    2. Jorge Navarro & Franco Pellerey & Julio Mulero, 2022. "On sums of dependent random lifetimes under the time-transformed exponential model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 879-900, December.
    3. Guillén, Montserrat & Sarabia, José María & Prieto, Faustino, 2013. "Simple risk measure calculations for sums of positive random variables," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 273-280.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bolancé, Catalina & Bahraoui, Zuhair & Artís, Manuel, 2014. "Quantifying the risk using copulae with nonparametric marginals," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 46-56.
    2. Mansour Shrahili & Mohamed Kayid, 2023. "Stochastic Orderings of the Idle Time of Inactive Standby Systems," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    3. Paul Embrechts & Giovanni Puccetti, 2006. "Bounds for Functions of Dependent Risks," Finance and Stochastics, Springer, vol. 10(3), pages 341-352, September.
    4. Serguei Foss & Andrew Richards, 2010. "On Sums of Conditionally Independent Subexponential Random Variables," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 102-119, February.
    5. Thibaut Lux & Antonis Papapantoleon, 2016. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Papers 1610.09734, arXiv.org, revised Nov 2018.
    6. Embrechts, Paul & Hoing, Andrea & Puccetti, Giovanni, 2005. "Worst VaR scenarios," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 115-134, August.
    7. Puccetti Giovanni & Rüschendorf Ludger, 2012. "Bounds for joint portfolios of dependent risks," Statistics & Risk Modeling, De Gruyter, vol. 29(2), pages 107-132, June.
    8. Mihai Banciu & Fredrik Ødegaard & Alia Stanciu, 2019. "Distribution-free bounds for the expected marginal seat revenue heuristic with dependent demands," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 18(2), pages 155-163, April.
    9. Kaas, Rob & Laeven, Roger J.A. & Nelsen, Roger B., 2009. "Worst VaR scenarios with given marginals and measures of association," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 146-158, April.
    10. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Jing Yao, 2017. "How robust is the value-at-risk of credit risk portfolios?," The European Journal of Finance, Taylor & Francis Journals, vol. 23(6), pages 507-534, May.
    11. Lux, Thibaut & Papapantoleon, Antonis, 2019. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 73-83.
    12. Corrado De Vecchi & Max Nendel & Jan Streicher, 2024. "Upper Comonotonicity and Risk Aggregation under Dependence Uncertainty," Papers 2406.19242, arXiv.org.
    13. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    14. Gebizlioglu, Omer L. & Yagci, Banu, 2008. "Tolerance intervals for quantiles of bivariate risks and risk measurement," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1022-1027, June.
    15. Laeven, Roger J.A., 2009. "Worst VaR scenarios: A remark," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 159-163, April.
    16. Bernard, Carole & Vanduffel, Steven, 2015. "A new approach to assessing model risk in high dimensions," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 166-178.
    17. Yanqin Fan & Sang Soo Park, 2009. "Partial identification of the distribution of treatment effects and its confidence sets," Advances in Econometrics, in: Nonparametric Econometric Methods, pages 3-70, Emerald Group Publishing Limited.
    18. De Vecchi, Corrado & Scherer, Matthias, 2025. "Pricing insurance contracts with an existing portfolio as background risk," Insurance: Mathematics and Economics, Elsevier, vol. 122(C), pages 180-193.
    19. Pablo Azcue & Nora Muler & Zbigniew Palmowski, 2016. "Optimal dividend payments for a two-dimensional insurance risk process," Papers 1603.07019, arXiv.org, revised Apr 2018.
    20. Paul Embrechts & Giovanni Puccetti, 2006. "Aggregating risk capital, with an application to operational risk," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 31(2), pages 71-90, December.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:48:y:2011:i:1:p:56-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.