IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v22y2023i1p24n1.html
   My bibliography  Save this article

When is the allele-sharing dissimilarity between two populations exceeded by the allele-sharing dissimilarity of a population with itself?

Author

Listed:
  • Liu Xiran

    (Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA)

  • Ahsan Zarif
  • Martheswaran Tarun K.
  • Rosenberg Noah A.

    (Department of Biology, Stanford University, Stanford, CA 94305, USA)

Abstract

Allele-sharing statistics for a genetic locus measure the dissimilarity between two populations as a mean of the dissimilarity between random pairs of individuals, one from each population. Owing to within-population variation in genotype, allele-sharing dissimilarities can have the property that they have a nonzero value when computed between a population and itself. We consider the mathematical properties of allele-sharing dissimilarities in a pair of populations, treating the allele frequencies in the two populations parametrically. Examining two formulations of allele-sharing dissimilarity, we obtain the distributions of within-population and between-population dissimilarities for pairs of individuals. We then mathematically explore the scenarios in which, for certain allele-frequency distributions, the within-population dissimilarity – the mean dissimilarity between randomly chosen members of a population – can exceed the dissimilarity between two populations. Such scenarios assist in explaining observations in population-genetic data that members of a population can be empirically more genetically dissimilar from each other on average than they are from members of another population. For a population pair, however, the mathematical analysis finds that at least one of the two populations always possesses smaller within-population dissimilarity than the value of the between-population dissimilarity. We illustrate the mathematical results with an application to human population-genetic data.

Suggested Citation

  • Liu Xiran & Ahsan Zarif & Martheswaran Tarun K. & Rosenberg Noah A., 2023. "When is the allele-sharing dissimilarity between two populations exceeded by the allele-sharing dissimilarity of a population with itself?," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 22(1), pages 1-24, January.
  • Handle: RePEc:bpj:sagmbi:v:22:y:2023:i:1:p:24:n:1
    DOI: 10.1515/sagmb-2023-0004
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2023-0004
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2023-0004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Noah A Rosenberg & Saurabh Mahajan & Sohini Ramachandran & Chengfeng Zhao & Jonathan K Pritchard & Marcus W Feldman, 2005. "Clines, Clusters, and the Effect of Study Design on the Inference of Human Population Structure," PLOS Genetics, Public Library of Science, vol. 1(6), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nick Patterson & Alkes L Price & David Reich, 2006. "Population Structure and Eigenanalysis," PLOS Genetics, Public Library of Science, vol. 2(12), pages 1-20, December.
    2. Vaughan, Laura K. & Divers, Jasmin & Padilla, Miguel A. & Redden, David T. & Tiwari, Hemant K. & Pomp, Daniel & Allison, David B., 2009. "The use of plasmodes as a supplement to simulations: A simple example evaluating individual admixture estimation methodologies," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1755-1766, March.
    3. Eric R Londin & Margaret A Keller & Cathleen Maista & Gretchen Smith & Laura A Mamounas & Ran Zhang & Steven J Madore & Katrina Gwinn & Roderick A Corriveau, 2010. "CoAIMs: A Cost-Effective Panel of Ancestry Informative Markers for Determining Continental Origins," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-12, October.
    4. Peristera Paschou & Petros Drineas & Jamey Lewis & Caroline M Nievergelt & Deborah A Nickerson & Joshua D Smith & Paul M Ridker & Daniel I Chasman & Ronald M Krauss & Elad Ziv, 2008. "Tracing Sub-Structure in the European American Population with PCA-Informative Markers," PLOS Genetics, Public Library of Science, vol. 4(7), pages 1-13, July.
    5. Spilimbergo, Antonio & Giuliano, Paola & Tonon, Giovanni, 2006. "Genetic, Cultural and Geographical Distances," CEPR Discussion Papers 5807, C.E.P.R. Discussion Papers.
    6. Ramachandran, Sohini & Rosenberg, Noah A. & Feldman, Marcus W. & Wakeley, John, 2008. "Population differentiation and migration: Coalescence times in a two-sex island model for autosomal and X-linked loci," Theoretical Population Biology, Elsevier, vol. 74(4), pages 291-301.
    7. Arbisser, Ilana M. & Rosenberg, Noah A., 2020. "FST and the triangle inequality for biallelic markers," Theoretical Population Biology, Elsevier, vol. 133(C), pages 117-129.
    8. Ting Fung Ma & Fangfang Wang & Jun Zhu, 2023. "On generalized latent factor modeling and inference for high‐dimensional binomial data," Biometrics, The International Biometric Society, vol. 79(3), pages 2311-2320, September.
    9. Charlotte Faurie & Clement Mettling & Mohamed Ali Bchir & Danang Hadmoko & Carine Heitz & Evi Lestari & Michel Raymond & Marc Willinger, 2016. "Evidence of genotypic adaptation to the exposure to volcanic risk at the dopamine receptor DRD4 locus," Post-Print hal-02062364, HAL.
    10. Szpiech, Zachary A. & Rosenberg, Noah A., 2011. "On the size distribution of private microsatellite alleles," Theoretical Population Biology, Elsevier, vol. 80(2), pages 100-113.
    11. Ricardo Kanitz & Elsa G Guillot & Sylvain Antoniazza & Samuel Neuenschwander & Jérôme Goudet, 2018. "Complex genetic patterns in human arise from a simple range-expansion model over continental landmasses," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-16, February.
    12. Frank, Reanne, 2007. "What to make of it? The (Re)emergence of a biological conceptualization of race in health disparities research," Social Science & Medicine, Elsevier, vol. 64(10), pages 1977-1983, May.
    13. Catherine Bliss, 2015. "Science and Struggle," The ANNALS of the American Academy of Political and Social Science, , vol. 661(1), pages 86-108, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:22:y:2023:i:1:p:24:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.