IDEAS home Printed from
   My bibliography  Save this article

Estimating Fielding Ability in Baseball Players Over Time


  • Piette James

    (University of Pennsylvania)

  • Jensen Shane T.

    (University of Pennsylvania)


Quantitative evaluation of fielding ability in baseball has been an ongoing challenge for statisticians. Detailed recording of ball-in-play data in recent years has spurred the development of sophisticated fielding models. Foremost among these approaches, Jensen et al. (2009) used a hierarchical Bayesian model to estimate spatial fielding curves for individual players. These previous efforts have not addressed evolution in a player’s fielding ability over time. We expand the work of Jensen et al. (2009) to model the fielding ability of individual players over multiple seasons. Several different models are implemented and compared via posterior predictive validation on hold-out data. Among our choices, we find that a model which imposes shrinkage towards an age-specific average gives the best performance. Our temporal models allow us to delineate the performance of a fielder on a season-to-season basis versus their entire career.

Suggested Citation

  • Piette James & Jensen Shane T., 2012. "Estimating Fielding Ability in Baseball Players Over Time," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(3), pages 1-36, October.
  • Handle: RePEc:bpj:jqsprt:v:8:y:2012:i:3:n:7

    Download full text from publisher

    File URL:
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Reich, Brian J. & Hodges, James S. & Carlin, Bradley P. & Reich, Adam M., 2006. "A Spatial Analysis of Basketball Shot Chart Data," The American Statistician, American Statistical Association, vol. 60, pages 3-12, February.
    2. Kaplan David, 2008. "Univariate and Multivariate Autoregressive Time Series Models of Offensive Baseball Performance: 1901-2005," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 4(3), pages 1-23, July.
    3. Null Brad, 2009. "Modeling Baseball Player Ability with a Nested Dirichlet Distribution," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(2), pages 1-38, May.
    4. Kalist David E & Spurr Stephen J, 2006. "Baseball Errors," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 2(4), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:8:y:2012:i:3:n:7. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.