IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v8y2012i2n7.html
   My bibliography  Save this article

Parsing the Relationship between Baserunning and Batting Abilities within Lineups

Author

Listed:
  • Baumer Ben S.

    (CUNY Graduate School and University Center)

  • Piette James

    (University of Pennsylvania)

  • Null Brad

    (Stanford University)

Abstract

A baseball team's offensive prowess is a function of two types of abilities: batting and baserunning. While each has been studied extensively in isolation, the effects of their interaction is not well understood. We model offensive output as a scalar function f of an individual player's batting and baserunning profile z. Each of these profiles is in turn estimated from Retrosheet data using heirarchical Bayesian models. We then use the SimulOutCome simulation engine as a method to generate values of f(z) over a fine grid of points. Finally, for each of several methods of taking the extra base, we graphically depict the surface f(z) over changes in the probability of advancing via that method. This framework allows us to draw conclusions both about optimal baserunning strategies in general, and about how particular offensive profiles affect a player's optimal baserunning strategy. We present many informative visualizations and analyze specific aspects of several well-known Major League players.

Suggested Citation

  • Baumer Ben S. & Piette James & Null Brad, 2012. "Parsing the Relationship between Baserunning and Batting Abilities within Lineups," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(2), pages 1-19, June.
  • Handle: RePEc:bpj:jqsprt:v:8:y:2012:i:2:n:7
    as

    Download full text from publisher

    File URL: https://www.degruyter.com/view/j/jqas.2012.8.issue-2/1559-0410.1429/1559-0410.1429.xml?format=INT
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Albert James, 2006. "Pitching Statistics, Talent and Luck, and the Best Strikeout Seasons of All-Time," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 2(1), pages 1-32, January.
    2. Baumer Ben S, 2009. "Using Simulation to Estimate the Impact of Baserunning Ability in Baseball," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(2), pages 1-18, May.
    3. Null Brad, 2009. "Modeling Baseball Player Ability with a Nested Dirichlet Distribution," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(2), pages 1-38, May.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:8:y:2012:i:2:n:7. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: https://www.degruyter.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.