IDEAS home Printed from https://ideas.repec.org/a/bpj/ecqcon/v35y2020i2p67-77n1.html
   My bibliography  Save this article

The Reflected-Shifted-Truncated Lindley Distribution with Applications

Author

Listed:
  • Dey Sanku

    (Department of Statistics, St. Anthony’s College, Shillong, Meghalaya, India)

  • Waymyers Sophia

    (Department of Mathematics, Francis Marion University, Florence, USA)

  • Kumar Devendra

    (Department of Statistics, Central University of Haryana, Mahendragarh, India)

Abstract

In this paper, a new probability density function with bounded domain is presented. The new distribution arises from the Lindley distribution proposed in 1958. It presents the advantage of not including any special function in its formulation. The new transformed model, called the reflected-shifted-truncated Lindley distribution can be used to model left-skewed data. We provide a comprehensive treatment of general mathematical and statistical properties of this distribution. We estimate the model parameters by maximum likelihood methods based on complete and right-censored data. To assess the performance and consistency of the maximum likelihood estimators, we conduct a simulation study with varying sample sizes. Finally, we use the distribution to model left-skewed survival and failure data from two real data sets. For the real data sets containing complete data and right-censored data, this distribution is superior in its ability to sufficiently model the data as compared to the power Lindley, exponentiated power Lindley, generalized inverse Lindley, generalized weighted Lindley and the well-known Gompertz distributions.

Suggested Citation

  • Dey Sanku & Waymyers Sophia & Kumar Devendra, 2020. "The Reflected-Shifted-Truncated Lindley Distribution with Applications," Stochastics and Quality Control, De Gruyter, vol. 35(2), pages 67-77, December.
  • Handle: RePEc:bpj:ecqcon:v:35:y:2020:i:2:p:67-77:n:1
    DOI: 10.1515/eqc-2020-0008
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/eqc-2020-0008
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/eqc-2020-0008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanku Dey & Indranil Ghosh & Devendra Kumar, 2019. "Alpha-Power Transformed Lindley Distribution: Properties and Associated Inference with Application to Earthquake Data," Annals of Data Science, Springer, vol. 6(4), pages 623-650, December.
    2. Jiang, R., 2013. "A new bathtub curve model with a finite support," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 44-51.
    3. A. R. Thatcher, 1999. "The long‐term pattern of adult mortality and the highest attained age," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(1), pages 5-43.
    4. Ghitany, M.E. & Al-Mutairi, D.K. & Nadarajah, S., 2008. "Zero-truncated Poisson–Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 279-287.
    5. M. E. Ghitany & D. K. Al-Mutairi, 2008. "Size-biased Poisson-Lindley distribution and its application," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 299-311.
    6. Kahadawala Cooray & Malwane Ananda, 2010. "Analyzing survival data with highly negatively skewed distribution: The Gompertz-sinh family," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(1), pages 1-11.
    7. Ghitany, M.E. & Atieh, B. & Nadarajah, S., 2008. "Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(4), pages 493-506.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanku Dey & Indranil Ghosh & Devendra Kumar, 2019. "Alpha-Power Transformed Lindley Distribution: Properties and Associated Inference with Application to Earthquake Data," Annals of Data Science, Springer, vol. 6(4), pages 623-650, December.
    2. Ramajeyam Tharshan & Pushpakanthie Wijekoon, 2020. "A comparison study on a new five-parameter generalized Lindley distribution with its sub-models," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 89-117, June.
    3. Amer Ibrahim Al-Omari & SidAhmed Benchiha & Ibrahim M. Almanjahie, 2022. "Efficient Estimation of Two-Parameter Xgamma Distribution Parameters Using Ranked Set Sampling Design," Mathematics, MDPI, vol. 10(17), pages 1-18, September.
    4. Sanku Dey & Emrah Altun & Devendra Kumar & Indranil Ghosh, 2023. "The Reflected-Shifted-Truncated Lomax Distribution: Associated Inference with Applications," Annals of Data Science, Springer, vol. 10(3), pages 805-828, June.
    5. Hurairah Ahmed & Alabid Abdelhakim, 2020. "Beta transmuted Lomax distribution with applications," Statistics in Transition New Series, Statistics Poland, vol. 21(2), pages 13-34, June.
    6. Shikhar Tyagi & Arvind Pandey & Christophe Chesneau, 2022. "Weighted Lindley Shared Regression Model for Bivariate Left Censored Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 655-682, November.
    7. Tharshan Ramajeyam & Wijekoon Pushpakanthie, 2020. "A comparison study on a new five-parameter generalized Lindley distribution with its sub-models," Statistics in Transition New Series, Statistics Poland, vol. 21(2), pages 89-117, June.
    8. Halim Zeghdoudi & Lazri Nouara & Djabrane Yahia, 2018. "Lindley Pareto Distribution," Statistics in Transition New Series, Polish Statistical Association, vol. 19(4), pages 671-692, December.
    9. Jimmy Reyes & Yuri A. Iriarte & Pedro Jodrá & Héctor W. Gómez, 2019. "The Slash Lindley-Weibull Distribution," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 235-251, March.
    10. Mahendra Saha & Harsh Tripathi & Sanku Dey & Sudhansu S. Maiti, 2021. "Acceptance sampling inspection plan for the Lindley and power Lindley distributed quality characteristics," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1410-1419, December.
    11. Wang, Shaochen & Weiß, Christian H., 2023. "New characterizations of the (discrete) Lindley distribution and their applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 310-322.
    12. Manoj Kumar & Anurag Pathak & Sukriti Soni, 2019. "Bayesian Inference for Rayleigh Distribution Under Step-Stress Partially Accelerated Test with Progressive Type-II Censoring with Binomial Removal," Annals of Data Science, Springer, vol. 6(1), pages 117-152, March.
    13. Muhammad Aslam Mohd Safari & Nurulkamal Masseran & Muhammad Hilmi Abdul Majid, 2020. "Robust Reliability Estimation for Lindley Distribution—A Probability Integral Transform Statistical Approach," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
    14. A. Shabani & M. Khaleghi Moghadam & A. Gholami & E. Moradi, 2018. "Exponentiated Power Lindley Logarithmic: Model, Properties and Applications," Annals of Data Science, Springer, vol. 5(4), pages 583-613, December.
    15. Emrah Altun & Gauss M. Cordeiro, 2020. "The unit-improved second-degree Lindley distribution: inference and regression modeling," Computational Statistics, Springer, vol. 35(1), pages 259-279, March.
    16. Morad Alizadeh & Emrah Altun & Gamze Ozel & Mahmoud Afshari & Abbas Eftekharian, 2019. "A New Odd Log-Logistic Lindley Distribution with Properties and Applications," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 323-346, December.
    17. Shovan Chowdhury, 2019. "Selection between Exponential and Lindley distributions," Working papers 316, Indian Institute of Management Kozhikode.
    18. Tzong-Ru Tsai & Yuhlong Lio & Jyun-You Chiang & Yi-Jia Huang, 2022. "A New Process Performance Index for the Weibull Distribution with a Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 10(21), pages 1-17, November.
    19. Kamlesh Kumar Shukla & Rama Shanker, 2018. "Power Ishita Distribution And Its Application To Model Lifetime Data," Statistics in Transition New Series, Polish Statistical Association, vol. 19(1), pages 135-148, March.
    20. Ranjbar V. & Alizadeh M. & Hamedani G. G., 2018. "Extended Exponentiated Power Lindley Distribution," Statistics in Transition New Series, Statistics Poland, vol. 19(4), pages 621-643, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ecqcon:v:35:y:2020:i:2:p:67-77:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.