IDEAS home Printed from https://ideas.repec.org/a/bpj/apjrin/v13y2019i2p10n1.html
   My bibliography  Save this article

Regularized Regression for Reserving and Mortality Models

Author

Listed:
  • Venter Gary

    (University of New South Wales, Kensington, Australia)

Abstract

Bayesian regularization, a relatively new method for estimating model parameters, shrinks estimates towards the overall mean by shrinking the parameters. It has been proven to lower estimation and prediction variances from those of MLE for linear models, such as regression or GLM. It has a goodness-of-fit measure, and can readily be applied using available software. This can be used for any type of actuarial linear modeling, but it is slightly more complicated for mortality and loss reserving models that use row, column, and diagonal effects for array data. These are called age-period-cohort, or APC models by statisticians. The problem is that the row, column and diagonal effects are not what should be shrunk. These models can easily become over-parameterized, and actuaries often reduce parameters with smooth curves or cubic splines. We discuss an alternative smoothing method that uses regularization, with its reduction in estimation errors, and illustrate both its classical and Bayesian forms and their application to APC modeling. Typical actuarial models and some generalizations are used as examples.

Suggested Citation

  • Venter Gary, 2019. "Regularized Regression for Reserving and Mortality Models," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 13(2), pages 1-10, July.
  • Handle: RePEc:bpj:apjrin:v:13:y:2019:i:2:p:10:n:1
    DOI: 10.1515/apjri-2018-0022
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/apjri-2018-0022
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/apjri-2018-0022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    2. Venter, Gary & Şahın, Şule, 2018. "Parsimonious Parameterization Of Age-Period-Cohort Models By Bayesian Shrinkage - Erratum," ASTIN Bulletin, Cambridge University Press, vol. 48(1), pages 479-479, January.
    3. Gao, Guangyuan & Meng, Shengwang, 2018. "Stochastic Claims Reserving Via A Bayesian Spline Model With Random Loss Ratio Effects," ASTIN Bulletin, Cambridge University Press, vol. 48(1), pages 55-88, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Greg Taylor, 2019. "Loss Reserving Models: Granular and Machine Learning Forms," Risks, MDPI, vol. 7(3), pages 1-18, July.
    2. repec:hum:wpaper:sfb649dp2009-008 is not listed on IDEAS
    3. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2011. "Mortality density forecasts: An analysis of six stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 355-367, May.
    4. Jose Garrido & Xavier Milhaud & Anani Olympio & Max Popp, 2024. "Climate Risk and its Impact on Insurance [Risque climatique et impact en assurance]," Post-Print hal-04684634, HAL.
    5. Broeders, Dirk & Mehlkopf, Roel & van Ool, Annick, 2021. "The economics of sharing macro-longevity risk," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 440-458.
    6. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    7. Kung, Ko-Lun & MacMinn, Richard D. & Kuo, Weiyu & Tsai, Chenghsien Jason, 2022. "Multi-population mortality modeling: When the data is too much and not enough," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 41-55.
    8. Katja Hanewald & Thomas Post & Helmut Gründl, 2011. "Stochastic Mortality, Macroeconomic Risks and Life Insurer Solvency," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 36(3), pages 458-475, July.
    9. Huang, Fei & Maller, Ross & Ning, Xu, 2020. "Modelling life tables with advanced ages: An extreme value theory approach," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 95-115.
    10. Gabriella Piscopo & Marina Resta, 2017. "Applying spectral biclustering to mortality data," Risks, MDPI, vol. 5(2), pages 1-13, April.
    11. Neves, César & Fernandes, Cristiano & Hoeltgebaum, Henrique, 2017. "Five different distributions for the Lee–Carter model of mortality forecasting: A comparison using GAS models," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 48-57.
    12. Debón, A. & Martínez-Ruiz, F. & Montes, F., 2010. "A geostatistical approach for dynamic life tables: The effect of mortality on remaining lifetime and annuities," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 327-336, December.
    13. Adrian Raftery & Jennifer Chunn & Patrick Gerland & Hana Ševčíková, 2013. "Bayesian Probabilistic Projections of Life Expectancy for All Countries," Demography, Springer;Population Association of America (PAA), vol. 50(3), pages 777-801, June.
    14. Bozikas, Apostolos & Pitselis, Georgios, 2020. "Incorporating crossed classification credibility into the Lee–Carter model for multi-population mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 353-368.
    15. Phil Mike Jones & Jon Minton & Andrew Bell, 2023. "Methods for disentangling period and cohort changes in mortality risk over the twentieth century: comparing graphical and modelling approaches," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3219-3239, August.
    16. Dorota Toczydlowska & Gareth W. Peters & Man Chung Fung & Pavel V. Shevchenko, 2017. "Stochastic Period and Cohort Effect State-Space Mortality Models Incorporating Demographic Factors via Probabilistic Robust Principal Components," Risks, MDPI, vol. 5(3), pages 1-77, July.
    17. Suryo Adi Rakhmawan & M. Hafidz Omar & Muhammad Riaz & Nasir Abbas, 2023. "Hotelling T 2 Control Chart for Detecting Changes in Mortality Models Based on Machine-Learning Decision Tree," Mathematics, MDPI, vol. 11(3), pages 1-14, January.
    18. David Blake & Andrew Cairns & Guy Coughlan & Kevin Dowd & Richard MacMinn, 2013. "The New Life Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 501-558, September.
    19. Huang, H. & Milevsky, M.A. & Salisbury, T.S., 2017. "Retirement spending and biological age," Journal of Economic Dynamics and Control, Elsevier, vol. 84(C), pages 58-76.
    20. Graziani, Rebecca & NIGRI, ANDREA, 2023. "An Age–Period–Cohort Model in a Dirichlet Framework: A Coherent Causes of Death Estimation," SocArXiv 856yw, Center for Open Science.
    21. R. H. Ilyasov & V. A. Plotnikov, 2022. "Oil Production and Carbon Emissions: Spline Analysis of Relationships," Administrative Consulting, Russian Presidential Academy of National Economy and Public Administration. North-West Institute of Management., issue 5.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:apjrin:v:13:y:2019:i:2:p:10:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyterbrill.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.