IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v78y2024i1p105-135.html
   My bibliography  Save this article

On partially observed competing risks model for Chen distribution under generalized progressive hybrid censoring

Author

Listed:
  • Kundan Singh
  • Amulya Kumar Mahto
  • Yogesh Mani Tripathi

Abstract

In this paper, we discuss the inference for the competing risks model when the failure times follow Chen distribution. With assumption of two causes of failures, which are partially observed, are considered as independent. The existence and uniqueness of maximum likelihood estimates for model parameters are obtained under generalized progressive hybrid censoring. Also, we discussed the classical and Bayesian inferences of the model parameters under the assumption of restricted and nonrestricted parameters. Performance of classical point and interval estimators are compared with Bayesian point and interval estimators by conducting extensive simulation study. In addition to that, for illustration purpose, a real life example is discussed. Finally, some concluding remarks, regarding the presented model, are made.

Suggested Citation

  • Kundan Singh & Amulya Kumar Mahto & Yogesh Mani Tripathi, 2024. "On partially observed competing risks model for Chen distribution under generalized progressive hybrid censoring," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 78(1), pages 105-135, February.
  • Handle: RePEc:bla:stanee:v:78:y:2024:i:1:p:105-135
    DOI: 10.1111/stan.12308
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12308
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12308?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Liang & Tripathi, Yogesh Mani & Lodhi, Chandrakant & Zuo, Xuanjia, 2022. "Inference for constant-stress Weibull competing risks model under generalized progressive hybrid censoring," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 70-83.
    2. Liang Wang & Ke Wu & Yogesh Mani Tripathi & Chandrakant Lodhi, 2022. "Reliability analysis of multicomponent stress–strength reliability from a bathtub-shaped distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 49(1), pages 122-142, January.
    3. Manoj Kumar Rastogi & Yogesh Mani Tripathi & Shuo-Jye Wu, 2012. "Estimating the parameters of a bathtub-shaped distribution under progressive type-II censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2389-2411, July.
    4. Sanku Dey & Liang Wang & Mazen Nassar, 2022. "Inference on Nadarajah–Haghighi distribution with constant stress partially accelerated life tests under progressive type-II censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 49(11), pages 2891-2912, August.
    5. Cramer, Erhard & Schmiedt, Anja Bettina, 2011. "Progressively Type-II censored competing risks data from Lomax distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1285-1303, March.
    6. Balakrishnan, N. & Kundu, Debasis, 2013. "Hybrid censoring: Models, inferential results and applications," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 166-209.
    7. Rui Hua & Wenhao Gui, 2022. "Inference for copula-based dependent competing risks model with step-stress accelerated life test under generalized progressive hybrid censoring," Computational Statistics, Springer, vol. 37(5), pages 2399-2436, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manoj Chacko & Rakhi Mohan, 2019. "Bayesian analysis of Weibull distribution based on progressive type-II censored competing risks data with binomial removals," Computational Statistics, Springer, vol. 34(1), pages 233-252, March.
    2. Zhang, Fode & Shi, Yimin, 2016. "Geometry of exponential family with competing risks and censored data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 446(C), pages 234-245.
    3. Subhankar Dutta & Suchandan Kayal, 2023. "Inference of a competing risks model with partially observed failure causes under improved adaptive type-II progressive censoring," Journal of Risk and Reliability, , vol. 237(4), pages 765-780, August.
    4. Rui Hua & Wenhao Gui, 2022. "Inference for copula-based dependent competing risks model with step-stress accelerated life test under generalized progressive hybrid censoring," Computational Statistics, Springer, vol. 37(5), pages 2399-2436, November.
    5. Rui Hua & Wenhao Gui, 2022. "Revisit to progressively Type-II censored competing risks data from Lomax distributions," Journal of Risk and Reliability, , vol. 236(3), pages 377-394, June.
    6. Subhankar Dutta & Sanku Dey & Suchandan Kayal, 2024. "Bayesian survival analysis of logistic exponential distribution for adaptive progressive Type-II censored data," Computational Statistics, Springer, vol. 39(4), pages 2109-2155, June.
    7. Refah Alotaibi & Ehab M. Almetwally & Qiuchen Hai & Hoda Rezk, 2022. "Optimal Test Plan of Step Stress Partially Accelerated Life Testing for Alpha Power Inverse Weibull Distribution under Adaptive Progressive Hybrid Censored Data and Different Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    8. Tian, Yuzhu & Zhu, Qianqian & Tian, Maozai, 2015. "Estimation for mixed exponential distributions under type-II progressively hybrid censored samples," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 85-96.
    9. Syed Ejaz Ahmed & Reza Arabi Belaghi & Abdulkadir Hussein & Alireza Safariyan, 2024. "New and Efficient Estimators of Reliability Characteristics for a Family of Lifetime Distributions under Progressive Censoring," Mathematics, MDPI, vol. 12(10), pages 1-18, May.
    10. López-Fidalgo, J. & Rivas-López, M.J., 2014. "Optimal experimental designs for partial likelihood information," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 859-867.
    11. Jiaxin Zhang & Wenhao Gui, 2025. "Order restricted inference for Chen life time populations under progressive type-II censoring scheme with partially observed competing risks," Computational Statistics, Springer, vol. 40(5), pages 2657-2699, June.
    12. Soumya Roy & Biswabrata Pradhan, 2023. "Inference for log‐location‐scale family of distributions under competing risks with progressive type‐I interval censored data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 208-232, May.
    13. Suparna Basu & Sanjay K. Singh & Umesh Singh, 2019. "Estimation of Inverse Lindley Distribution Using Product of Spacings Function for Hybrid Censored Data," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1377-1394, December.
    14. Erhard Cramer, 2025. "Structure of hybrid censoring schemes and its implications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 88(3), pages 393-417, April.
    15. Siyi Chen & Wenhao Gui, 2020. "Statistical Analysis of a Lifetime Distribution with a Bathtub-Shaped Failure Rate Function under Adaptive Progressive Type-II Censoring," Mathematics, MDPI, vol. 8(5), pages 1-21, April.
    16. Feizjavadian, S.H. & Hashemi, R., 2015. "Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall–Olkin bivariate Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 19-34.
    17. Julian Górny & Erhard Cramer, 2018. "Modularization of hybrid censoring schemes and its application to unified progressive hybrid censoring," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(2), pages 173-210, February.
    18. Mohamed Sief & Xinsheng Liu & Abd El-Raheem Mohamed Abd El-Raheem, 2024. "Inference for a constant-stress model under progressive type-II censored data from the truncated normal distribution," Computational Statistics, Springer, vol. 39(5), pages 2791-2820, July.
    19. Ruhul Ali Khan & Murari Mitra, 2021. "Estimation issues in the Exponential–Logarithmic model under hybrid censoring," Statistical Papers, Springer, vol. 62(1), pages 419-450, February.
    20. Ping Chan & Hon Ng & Feng Su, 2015. "Exact likelihood inference for the two-parameter exponential distribution under Type-II progressively hybrid censoring," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(6), pages 747-770, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:78:y:2024:i:1:p:105-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.