IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v74y2020i1p38-51.html
   My bibliography  Save this article

Accounting for time‐dependent treatment use when developing a prognostic model from observational data: A review of methods

Author

Listed:
  • Romin Pajouheshnia
  • Noah A. Schuster
  • Rolf H. H. Groenwold
  • Frans H. Rutten
  • Karel G. M. Moons
  • Linda M. Peelen

Abstract

Failure to account for time‐dependent treatment use when developing a prognostic model can result in biased future predictions. We reviewed currently available methods to account for treatment use when developing a prognostic model. First, we defined the estimands targeted by each method and examined their mechanisms of action with directed acyclic graphs (DAGs). Next, methods were implemented in data from 1,906 patients; 325 received selective β‐blockers (SBBs) during follow‐up. We demonstrated seven Cox regression modeling strategies: (a) ignoring SBB treatment; (b) excluding SBB users or (c) censoring them when treated; (d) inverse probability of treatment weighting after censoring (IPCW), including SBB treatment as (e) a binary or (f) a time‐dependent covariate; and (g) marginal structural modeling (MSM). Using DAGs, we demonstrated IPCW and MSM have the best properties and target a similar estimand. In the case study, compared to (a), approaches (b) and (e) provided predictions that were 1% and 2% higher on average. Performance (c‐statistic, Brier score, calibration slope) varied minimally between approaches. Our review of methods confirmed that ignoring treatment is theoretically inferior, but differences between the prediction models obtained using different methods can be modest in practice. Future simulation studies and applications are needed to assess the value of applying IPCW or MSM to adjust for treatments in different treatment and disease settings.

Suggested Citation

  • Romin Pajouheshnia & Noah A. Schuster & Rolf H. H. Groenwold & Frans H. Rutten & Karel G. M. Moons & Linda M. Peelen, 2020. "Accounting for time‐dependent treatment use when developing a prognostic model from observational data: A review of methods," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(1), pages 38-51, February.
  • Handle: RePEc:bla:stanee:v:74:y:2020:i:1:p:38-51
    DOI: 10.1111/stan.12193
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12193
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12193?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James M. Robins & Dianne M. Finkelstein, 2000. "Correcting for Noncompliance and Dependent Censoring in an AIDS Clinical Trial with Inverse Probability of Censoring Weighted (IPCW) Log-Rank Tests," Biometrics, The International Biometric Society, vol. 56(3), pages 779-788, September.
    2. Qingxia Du & Yongchang Sun & Ning Ding & Lijin Lu & Ying Chen, 2014. "Beta-Blockers Reduced the Risk of Mortality and Exacerbation in Patients with COPD: A Meta-Analysis of Observational Studies," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Douglas E. Schaubel & Guanghui Wei, 2011. "Double Inverse-Weighted Estimation of Cumulative Treatment Effects Under Nonproportional Hazards and Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(1), pages 29-38, March.
    2. Greg DiRienzo, 2004. "Nonparametric Comparison of Two Survival-Time Distributions in the Presence of Dependent Censoring," Harvard University Biostatistics Working Paper Series 1000, Berkeley Electronic Press.
    3. Nicole K Kelly & Nivedita L Bhushan & Nisha Gottfredson O’Shea & F Xavier Gómez-Olivé & Allison E Aiello & Laura Danielle Wagner & Sumaya Mall & Kathleen Kahn & Audrey E Pettifor & Marie CD Stoner, 2024. "Trajectories of intimate partner violence and their relationship to stress among young women in South Africa: An HPTN 068 study," International Journal of Social Psychiatry, , vol. 70(5), pages 904-914, August.
    4. Tala Al-Rousan & Jeffrey A Sparks & Mary Pettinger & Rowan Chlebowski & JoAnn E Manson & Andrew M Kauntiz & Robert Wallace, 2018. "Menopausal hormone therapy and the incidence of carpal tunnel syndrome in postmenopausal women: Findings from the Women’s Health Initiative," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-15, December.
    5. A. G. DiRienzo, 2003. "Nonparametric Comparison of Two Survival-Time Distributions in the Presence of Dependent Censoring," Biometrics, The International Biometric Society, vol. 59(3), pages 497-504, September.
    6. Shuxi Zeng & Elizabeth C. Lange & Elizabeth A. Archie & Fernando A. Campos & Susan C. Alberts & Fan Li, 2023. "A Causal Mediation Model for Longitudinal Mediators and Survival Outcomes with an Application to Animal Behavior," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 197-218, June.
    7. Shen, Pao-sheng, 2009. "An inverse-probability-weighted approach to the estimation of distribution function with doubly censored data," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1269-1276, May.
    8. Chiu-Hsieh Hsu & Jeremy Taylor & Susan Murray, 2004. "Survival Analysis USing Auxiliary Variables Via Nonparametric Multiple Imputation," The University of Michigan Department of Biostatistics Working Paper Series 1026, Berkeley Electronic Press.
    9. Geneletti, Sara & Mason, Alexina & Best, Nicky, 2011. "Adjusting for selection effects in epidemiologic studies: why sensitivity analysis is the only “solution”," LSE Research Online Documents on Economics 31520, London School of Economics and Political Science, LSE Library.
    10. Qingxia Chen & Fan Zhang & Ming-Hui Chen & Xiuyu Julie Cong, 2020. "Estimation of treatment effects and model diagnostics with two-way time-varying treatment switching: an application to a head and neck study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 685-707, October.
    11. Bella Vakulenko‐Lagun & Jing Qian & Sy Han Chiou & Nancy Wang & Rebecca A. Betensky, 2022. "Nonparametric estimation of the survival distribution under covariate‐induced dependent truncation," Biometrics, The International Biometric Society, vol. 78(4), pages 1390-1401, December.
    12. Andrew Ying & Eric J. Tchetgen Tchetgen, 2023. "Structural cumulative survival models for estimation of treatment effects accounting for treatment switching in randomized experiments," Biometrics, The International Biometric Society, vol. 79(3), pages 1597-1609, September.
    13. Jincheng Shen & Lu Wang & Jeremy M. G. Taylor, 2017. "Estimation of the optimal regime in treatment of prostate cancer recurrence from observational data using flexible weighting models," Biometrics, The International Biometric Society, vol. 73(2), pages 635-645, June.
    14. Yingchao Zhong & Douglas E. Schaubel, 2022. "Restricted mean survival time as a function of restriction time," Biometrics, The International Biometric Society, vol. 78(1), pages 192-201, March.
    15. Yasuhiro Hagiwara & Tomohiro Shinozaki & Hirofumi Mukai & Yutaka Matsuyama, 2021. "Sensitivity analysis for subsequent treatments in confirmatory oncology clinical trials: A two‐stage stochastic dynamic treatment regime approach," Biometrics, The International Biometric Society, vol. 77(2), pages 702-714, June.
    16. Gilles Crommen & Jad Beyhum & Ingrid Van Keilegom, 2024. "An instrumental variable approach under dependent censoring," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(2), pages 473-495, June.
    17. Meoli, Azzurra & Piva, Evila & Righi, Hérica, 2024. "Missing women in STEM occupations: The impact of university education on the gender gap in graduates' transition to work," Research Policy, Elsevier, vol. 53(8).
    18. Qi Gong & Douglas E. Schaubel, 2013. "Partly Conditional Estimation of the Effect of a Time-Dependent Factor in the Presence of Dependent Censoring," Biometrics, The International Biometric Society, vol. 69(2), pages 338-347, June.
    19. Miguel A. Hernán & James M. Robins & Luis A. García Rodríguez, 2005. "Discussion on "Statistical Issues Arising in the Women's Health Initiative"," Biometrics, The International Biometric Society, vol. 61(4), pages 922-930, December.
    20. Meredith B Brooks & Carole D Mitnick & Justin Manjourides, 2020. "Comparison of censoring assumptions to reduce bias in tuberculosis treatment cohort analyses," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-12, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:74:y:2020:i:1:p:38-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.